Phenotypic plasticity has been recently proposed to play an important role in invasion process. More precisely, phenotypic plasticity of alien invasive species could be higher in their exotic rather than native habitat, probably because of the release from biotic or abiotic constraints. In this paper, several plant functional traits were analysed on Ailanthus altissima (Mill.) Swingle, a highly invasive species in Europe, aiming at providing a comparison among key functional traits measured on individuals growing in their native habitat and to test if values of functional traits and their related plasticity are higher in exotic habitats. Our analysis pinpointed that variability of functional traits in the native habitat was mainly driven by different irradiance, temperature and evaporative demand of the studied sites, in accordance to the traits trade-offs in the Leaf Economic Spectrum. Physiological traits related to drought tolerance were different between native and exotic habitats. In the native one, A. altissima relied on osmoregulation processess to adjust leaf turgor loss point (Ψtlp), as the osmotic potential at full turgor (π0) were lower in drier sites. In the exotic habitat, individuals in drier sites had similar π0 but lower wall elasticity (ε), suggesting that leaves had thinner cell walls. Moreover, plasticity in specific leaf area and ε were higher in the exotic habitat. The novel features related to Ψtlp adjustment and the higher plasticity in traits related to leaf-construction costs could increase A. altissima fitness in response to different environmental conditions in its invasive range.
Plasticity of functional traits of tree of heaven is higher in exotic than in native habitats
Francesco Petruzzellis
;Tadeja Savi;Valentina Torboli;Alberto Pallavicini;Giovanni Bacaro;Andrea Nardini
2018-01-01
Abstract
Phenotypic plasticity has been recently proposed to play an important role in invasion process. More precisely, phenotypic plasticity of alien invasive species could be higher in their exotic rather than native habitat, probably because of the release from biotic or abiotic constraints. In this paper, several plant functional traits were analysed on Ailanthus altissima (Mill.) Swingle, a highly invasive species in Europe, aiming at providing a comparison among key functional traits measured on individuals growing in their native habitat and to test if values of functional traits and their related plasticity are higher in exotic habitats. Our analysis pinpointed that variability of functional traits in the native habitat was mainly driven by different irradiance, temperature and evaporative demand of the studied sites, in accordance to the traits trade-offs in the Leaf Economic Spectrum. Physiological traits related to drought tolerance were different between native and exotic habitats. In the native one, A. altissima relied on osmoregulation processess to adjust leaf turgor loss point (Ψtlp), as the osmotic potential at full turgor (π0) were lower in drier sites. In the exotic habitat, individuals in drier sites had similar π0 but lower wall elasticity (ε), suggesting that leaves had thinner cell walls. Moreover, plasticity in specific leaf area and ε were higher in the exotic habitat. The novel features related to Ψtlp adjustment and the higher plasticity in traits related to leaf-construction costs could increase A. altissima fitness in response to different environmental conditions in its invasive range.File | Dimensione | Formato | |
---|---|---|---|
Pigazzini2018_Article_AnInvestigationOnVIVOfASingle2.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
3.85 MB
Formato
Adobe PDF
|
3.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.