In this paper we investigate a mathematical model arising from volcanology describing surface deformation effects generated by a magma chamber embedded into Earth's interior and exerting on it a uniform hydrostatic pressure. The modeling assumptions translate mathematically into a Neumann boundary value problem for the classical Lamé system in a half-space with an embedded pressurized cavity. We establish well-posedness of the problem in suitable weighted Sobolev spaces and analyse the inverse problem of determining the pressurized cavity from partial measurements of the displacement field proving uniqueness and stability estimates.
On an elastic model arising from volcanology: An analysis of the direct and inverse problem
Rosset, E.
2018-01-01
Abstract
In this paper we investigate a mathematical model arising from volcanology describing surface deformation effects generated by a magma chamber embedded into Earth's interior and exerting on it a uniform hydrostatic pressure. The modeling assumptions translate mathematically into a Neumann boundary value problem for the classical Lamé system in a half-space with an embedded pressurized cavity. We establish well-posedness of the problem in suitable weighted Sobolev spaces and analyse the inverse problem of determining the pressurized cavity from partial measurements of the displacement field proving uniqueness and stability estimates.File | Dimensione | Formato | |
---|---|---|---|
ABR_JDiffEq2018.pdf
Accesso chiuso
Descrizione: Articolo
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
440.73 kB
Formato
Adobe PDF
|
440.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2931259_ABR_JDiffEq2018-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
969.89 kB
Formato
Adobe PDF
|
969.89 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.