In this paper we investigate a mathematical model arising from volcanology describing surface deformation effects generated by a magma chamber embedded into Earth's interior and exerting on it a uniform hydrostatic pressure. The modeling assumptions translate mathematically into a Neumann boundary value problem for the classical Lamé system in a half-space with an embedded pressurized cavity. We establish well-posedness of the problem in suitable weighted Sobolev spaces and analyse the inverse problem of determining the pressurized cavity from partial measurements of the displacement field proving uniqueness and stability estimates.

On an elastic model arising from volcanology: An analysis of the direct and inverse problem

Rosset, E.
2018-01-01

Abstract

In this paper we investigate a mathematical model arising from volcanology describing surface deformation effects generated by a magma chamber embedded into Earth's interior and exerting on it a uniform hydrostatic pressure. The modeling assumptions translate mathematically into a Neumann boundary value problem for the classical Lamé system in a half-space with an embedded pressurized cavity. We establish well-posedness of the problem in suitable weighted Sobolev spaces and analyse the inverse problem of determining the pressurized cavity from partial measurements of the displacement field proving uniqueness and stability estimates.
File in questo prodotto:
File Dimensione Formato  
ABR_JDiffEq2018.pdf

Accesso chiuso

Descrizione: Articolo
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 440.73 kB
Formato Adobe PDF
440.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2931259_ABR_JDiffEq2018-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 969.89 kB
Formato Adobe PDF
969.89 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2931259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact