Objective: Brain dynamics in developmental stuttering (DS) are not well understood. The supplementary motor area (SMA) plays a crucial role, since it communicates with regions related to planning/execution of movements, and with sub-cortical regions involved in paced/voluntary acts (such as speech). We used TMS combined with EEG to shed light on connections in DS, stimulating the SMA. Methods: TMS/EEG was recorded in adult DS and fluent speakers (FS), stimulating the SMA during rest. TMS-evoked potentials and source distribution were evaluated. Results: Compared to FS, stutterers showed lower activity of neural sources in early time windows: 66– 82 ms in SMA, and 91–102 ms in the left inferior frontal cortex and left inferior parietal lobule. Stutterers, however, showed higher activations in later time windows (i.e. from 260–460 ms), in temporal/premotor regions of the right hemisphere. Conclusions: These findings represent the functional counterpart to known white matter and cortico- basal-thalamo-cortical abnormalities in DS. They also explain how white matter abnormalities and cortico-basal-thalamo-cortical dysfunctions may be associated in DS. Finally, a mechanism is proposed in which compensatory activity of the non-dominant (right) hemisphere is recruited. Significance: DS may be a disorder of neural timing that appears to be delayed compared to FS; new mechanisms that support stuttering symptoms are inferred; the SMA may be a promising target for neuro-rehabilitation.

Stuttering as a matter of delay in neural activation: A combined TMS/EEG study

Busan, Pierpaolo
Membro del Collaboration Group
;
Del Ben, Giovanni
Membro del Collaboration Group
;
ARCARA, GIORGIO
Membro del Collaboration Group
;
Manganotti, Paolo
Membro del Collaboration Group
;
Battaglini, Piero Paolo
Membro del Collaboration Group
2019-01-01

Abstract

Objective: Brain dynamics in developmental stuttering (DS) are not well understood. The supplementary motor area (SMA) plays a crucial role, since it communicates with regions related to planning/execution of movements, and with sub-cortical regions involved in paced/voluntary acts (such as speech). We used TMS combined with EEG to shed light on connections in DS, stimulating the SMA. Methods: TMS/EEG was recorded in adult DS and fluent speakers (FS), stimulating the SMA during rest. TMS-evoked potentials and source distribution were evaluated. Results: Compared to FS, stutterers showed lower activity of neural sources in early time windows: 66– 82 ms in SMA, and 91–102 ms in the left inferior frontal cortex and left inferior parietal lobule. Stutterers, however, showed higher activations in later time windows (i.e. from 260–460 ms), in temporal/premotor regions of the right hemisphere. Conclusions: These findings represent the functional counterpart to known white matter and cortico- basal-thalamo-cortical abnormalities in DS. They also explain how white matter abnormalities and cortico-basal-thalamo-cortical dysfunctions may be associated in DS. Finally, a mechanism is proposed in which compensatory activity of the non-dominant (right) hemisphere is recruited. Significance: DS may be a disorder of neural timing that appears to be delayed compared to FS; new mechanisms that support stuttering symptoms are inferred; the SMA may be a promising target for neuro-rehabilitation.
2019
10-nov-2018
Pubblicato
https://www.sciencedirect.com/science/article/pii/S1388245718313385
File in questo prodotto:
File Dimensione Formato  
Busan et al 2019.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2931713_Busan et al 2019-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri
2931713_Busan et al 2019-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2931713
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact