This paper deals with the quasilinear elliptic problem egin{align*} { m -div} left({ abla u}/{sqrt{1 + | abla u|^2}} ight)+a(x) u &= b(x)/sqrt{1 + | abla u|^2} ext { in } B, ;; u=0 , ext{ on } partial B, end{align*} where $B$ is an open ball in $RR^N$, with $Nge 2$, and $a,b in C^1(overline B) $ are given radially symmetric functions, with $a(x) ge 0$ in $B$. This class of anisotropic prescribed mean curvature equations appears in the description of the geometry of the human cornea, as well as in the modeling theory of capillarity phenomena for compressible fluids. Unlike all previous works published on these subjects, existence and uniqueness of solutions of the above problem are here analyzed in the case where the coefficients $a, b$ are not necessarily constant and no sign condition is assumed on $b$.

Radial solutions of the Dirichlet problem for a class of quasilinear elliptic equations arising in optometry

Chiara Corsato;Colette De Coster;Pierpaolo Omari
2019-01-01

Abstract

This paper deals with the quasilinear elliptic problem egin{align*} { m -div} left({ abla u}/{sqrt{1 + | abla u|^2}} ight)+a(x) u &= b(x)/sqrt{1 + | abla u|^2} ext { in } B, ;; u=0 , ext{ on } partial B, end{align*} where $B$ is an open ball in $RR^N$, with $Nge 2$, and $a,b in C^1(overline B) $ are given radially symmetric functions, with $a(x) ge 0$ in $B$. This class of anisotropic prescribed mean curvature equations appears in the description of the geometry of the human cornea, as well as in the modeling theory of capillarity phenomena for compressible fluids. Unlike all previous works published on these subjects, existence and uniqueness of solutions of the above problem are here analyzed in the case where the coefficients $a, b$ are not necessarily constant and no sign condition is assumed on $b$.
2019
29-nov-2018
Pubblicato
File in questo prodotto:
File Dimensione Formato  
CDCFO NA.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 721.64 kB
Formato Adobe PDF
721.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
CDFO.pdf

Open Access dal 30/11/2020

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 299.21 kB
Formato Adobe PDF
299.21 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2932001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact