We characterize the properties of the intergalactic medium (IGM) around a sample of galaxies extracted from state-of-the-art hydrodynamical simulations of structure formation in a cosmological volume of 25 Mpc comoving at z˜ 2. The simulations are based on two different subresolution schemes for star formation and supernova feedback: the Multi-Phase Particle Integrator (MUPPI) scheme and the Effective Model. We develop a quantitative and probabilistic analysis based on the apparent optical depth method of the properties of the absorbers as a function of impact parameter from their nearby galaxies: in such a way, we probe different environments from circumgalactic medium to low-density filaments. Absorbers' properties are then compared with a spectroscopic observational data set obtained from high-resolution quasar spectra. Our main focus is on the N_{C IV}-N_{H I} relation around simulated galaxies: the results obtained with MUPPI and the Effective model are remarkably similar, with small differences only confined to regions at impact parameters b = [1 - 3] × rvir. Using C IV as a tracer of the metallicity, we obtain evidence that the observed metal absorption systems have the highest probability to be confined in a region of 150-400kpc around galaxies. Near-filament environments have instead metallicities too low to be probed by present-day telescopes, but could be probed by future spectroscopical studies. Finally, we compute C IV covering fractions which are in agreement with observational data.

Absorption systems at z ∼ 2 as a probe of the circum galactic medium: a probabilistic approach

Mongardi, C;Viel, M;Murante, G;Monaco, P
Membro del Collaboration Group
2018-01-01

Abstract

We characterize the properties of the intergalactic medium (IGM) around a sample of galaxies extracted from state-of-the-art hydrodynamical simulations of structure formation in a cosmological volume of 25 Mpc comoving at z˜ 2. The simulations are based on two different subresolution schemes for star formation and supernova feedback: the Multi-Phase Particle Integrator (MUPPI) scheme and the Effective Model. We develop a quantitative and probabilistic analysis based on the apparent optical depth method of the properties of the absorbers as a function of impact parameter from their nearby galaxies: in such a way, we probe different environments from circumgalactic medium to low-density filaments. Absorbers' properties are then compared with a spectroscopic observational data set obtained from high-resolution quasar spectra. Our main focus is on the N_{C IV}-N_{H I} relation around simulated galaxies: the results obtained with MUPPI and the Effective model are remarkably similar, with small differences only confined to regions at impact parameters b = [1 - 3] × rvir. Using C IV as a tracer of the metallicity, we obtain evidence that the observed metal absorption systems have the highest probability to be confined in a region of 150-400kpc around galaxies. Near-filament environments have instead metallicities too low to be probed by present-day telescopes, but could be probed by future spectroscopical studies. Finally, we compute C IV covering fractions which are in agreement with observational data.
File in questo prodotto:
File Dimensione Formato  
sty1283.pdf

accesso aperto

Descrizione: This article has been accepted for publication in Monthly notices of the Royal Astronomical Society ©: 2018. The Author(s).Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 10.01 MB
Formato Adobe PDF
10.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2933298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact