In this paper we show that, via an extension of time, some metric structures naturally appear in both classical and quantum mechanics when both are formulated via path-integrals. We calculate the various Ricci scalar and curvatures associated to these metric and prove that they can be chosen to be zero in classical mechanics while this is not possible in quantum mechanics.
On the metric structure of time in classical and quantum mechanics
E. Cattaruzza;E. Gozzi;MAURO, DANILO
2019-01-01
Abstract
In this paper we show that, via an extension of time, some metric structures naturally appear in both classical and quantum mechanics when both are formulated via path-integrals. We calculate the various Ricci scalar and curvatures associated to these metric and prove that they can be chosen to be zero in classical mechanics while this is not possible in quantum mechanics.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CPIQPIMetric.pdf
Open Access dal 20/11/2020
Descrizione: articolo principale
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
391.13 kB
Formato
Adobe PDF
|
391.13 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0003491618302938-main.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
505.46 kB
Formato
Adobe PDF
|
505.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.