In this paper we show that, via an extension of time, some metric structures naturally appear in both classical and quantum mechanics when both are formulated via path-integrals. We calculate the various Ricci scalar and curvatures associated to these metric and prove that they can be chosen to be zero in classical mechanics while this is not possible in quantum mechanics.

On the metric structure of time in classical and quantum mechanics

E. Cattaruzza;E. Gozzi;MAURO, DANILO
2019-01-01

Abstract

In this paper we show that, via an extension of time, some metric structures naturally appear in both classical and quantum mechanics when both are formulated via path-integrals. We calculate the various Ricci scalar and curvatures associated to these metric and prove that they can be chosen to be zero in classical mechanics while this is not possible in quantum mechanics.
2019
19-gen-2019
Epub ahead of print
File in questo prodotto:
File Dimensione Formato  
CPIQPIMetric.pdf

Open Access dal 20/11/2020

Descrizione: articolo principale
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 391.13 kB
Formato Adobe PDF
391.13 kB Adobe PDF Visualizza/Apri
1-s2.0-S0003491618302938-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 505.46 kB
Formato Adobe PDF
505.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2934090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact