The performance of the widely adopted slotted Aloha (SA) scheme has been recently improved thanks to the introduction of novel mechanisms, including interference cancellation (IC), packet segmentation, and slot slicing. The combined effect of these mechanisms in the presence of capture has however not yet deeply investigated, even if the resulting impact on the network behavior is determinant for properly quantifying the achievable throughput. To deal with this issue, this paper analyzes the influence of capture on a framed SA (FSA) system adopting IC, segmentation, and slicing, by considering a reliable decoding criterion that accounts for the actually experienced signal to interference-plus-noise ratio. A theoretical model is developed to evaluate the capture probability in fast and slow Rayleigh fading conditions, deriving closed-form expressions for the interference-limited case. The IC-based FSA throughput is then estimated adopting a Markov chain approach validated by Monte Carlo simulations. Finally, the performance of an actual system using a quadrature phase-shift keying modulation in conjunction with a turbo encoder is compared with that estimated by adopting the considered decoding criterion, in order to check its applicability to practical communication networks.
Impact of Segmentation and Capture on Slotted Aloha Systems Exploiting Interference Cancellation
Fulvio Babich;Massimiliano Comisso
2019-01-01
Abstract
The performance of the widely adopted slotted Aloha (SA) scheme has been recently improved thanks to the introduction of novel mechanisms, including interference cancellation (IC), packet segmentation, and slot slicing. The combined effect of these mechanisms in the presence of capture has however not yet deeply investigated, even if the resulting impact on the network behavior is determinant for properly quantifying the achievable throughput. To deal with this issue, this paper analyzes the influence of capture on a framed SA (FSA) system adopting IC, segmentation, and slicing, by considering a reliable decoding criterion that accounts for the actually experienced signal to interference-plus-noise ratio. A theoretical model is developed to evaluate the capture probability in fast and slow Rayleigh fading conditions, deriving closed-form expressions for the interference-limited case. The IC-based FSA throughput is then estimated adopting a Markov chain approach validated by Monte Carlo simulations. Finally, the performance of an actual system using a quadrature phase-shift keying modulation in conjunction with a turbo encoder is compared with that estimated by adopting the considered decoding criterion, in order to check its applicability to practical communication networks.File | Dimensione | Formato | |
---|---|---|---|
articolo_ToVT.pdf
accesso aperto
Descrizione: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Link to publisher's version: https://ieeexplore.ieee.org/document/8624264/ doi:10.1109/TVT.2019.2894705
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Copyright Editore
Dimensione
5.59 MB
Formato
Adobe PDF
|
5.59 MB | Adobe PDF | Visualizza/Apri |
08624264.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.