Glycogen synthase kinase 3β (GSK‐3β) and casein kinase 1δ (CK‐1δ) are emerging targets for the treatment of neuroinflammatory disorders, including Parkinson's disease. An inhibitor able to target these two kinases was developed by docking‐based design. Compound 12, 3‐(7‐amino‐5‐(cyclohexylamino)‐[1,2,4]triazolo[1,5‐a][1,3,5]triazin‐2‐yl)‐2‐cyanoacrylamide, showed combined inhibitory activity against GSK‐3β and CK‐1δ [IC50(GSK‐3β)=0.17 μm; IC50(CK‐1δ)=0.68 μm]. In particular, classical ATP competition was observed against CK‐1δ, and a co‐crystal of compound 12 inside GSK‐3β confirmed a covalent interaction between the cyanoacrylamide warhead and Cys199, which could help in the development of more potent covalent inhibitors of GSK‐3β. Preliminary studies on in vitro models of Parkinson's disease revealed that compound 12 is not cytotoxic and shows neuroprotective activity. These results encourage further investigations to validate GSK‐3β/CK‐1δ inhibition as a possible new strategy to treat neuroinflammatory/degenerative diseases.
A Triazolotriazine-Based Dual GSK-3β/CK-1δ Ligand as a Potential Neuroprotective Agent Presenting Two Different Mechanisms of Enzymatic Inhibition
Redenti, Sara;Marcovich, Irene;De Zorzi, Rita;Spalluto, Giampiero;Federico, Stephanie
2019-01-01
Abstract
Glycogen synthase kinase 3β (GSK‐3β) and casein kinase 1δ (CK‐1δ) are emerging targets for the treatment of neuroinflammatory disorders, including Parkinson's disease. An inhibitor able to target these two kinases was developed by docking‐based design. Compound 12, 3‐(7‐amino‐5‐(cyclohexylamino)‐[1,2,4]triazolo[1,5‐a][1,3,5]triazin‐2‐yl)‐2‐cyanoacrylamide, showed combined inhibitory activity against GSK‐3β and CK‐1δ [IC50(GSK‐3β)=0.17 μm; IC50(CK‐1δ)=0.68 μm]. In particular, classical ATP competition was observed against CK‐1δ, and a co‐crystal of compound 12 inside GSK‐3β confirmed a covalent interaction between the cyanoacrylamide warhead and Cys199, which could help in the development of more potent covalent inhibitors of GSK‐3β. Preliminary studies on in vitro models of Parkinson's disease revealed that compound 12 is not cytotoxic and shows neuroprotective activity. These results encourage further investigations to validate GSK‐3β/CK‐1δ inhibition as a possible new strategy to treat neuroinflammatory/degenerative diseases.File | Dimensione | Formato | |
---|---|---|---|
Redenti_et_al-2019-ChemMedChem.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
851.78 kB
Formato
Adobe PDF
|
851.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
cmdc201800778-sup-0001-misc_information.pdf
Accesso chiuso
Descrizione: Supporting information
Tipologia:
Altro materiale allegato
Licenza:
Copyright Editore
Dimensione
3.66 MB
Formato
Adobe PDF
|
3.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2935106_cmdc201800778-sup-0001-misc_information-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
4.28 MB
Formato
Adobe PDF
|
4.28 MB | Adobe PDF | Visualizza/Apri |
2935106_Redenti_et_al-2019-ChemMedChem-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.