The atomic structure is one key property for any material. Despite great efforts during the last few years unveiling the internal structure of silicon nano-ribbons, analysis of the interfacial structure and bonding was neglected. We report on a comprehensive photoelectron spectroscopy and photoelectron diffraction study that reveals the weak interaction of silicon nano-ribbons with the underlying silver substrate identifying the specific locations of the individual silicon, as well as silver atoms. Furthermore, we provide unique experimental evidence that clarifies the origin of the two distinct chemically shifted components in the silicon photoelectron spectra.
Facing the interaction of adsorbed silicon nano-ribbons on silver
Luca BignardiMembro del Collaboration Group
;
2017-01-01
Abstract
The atomic structure is one key property for any material. Despite great efforts during the last few years unveiling the internal structure of silicon nano-ribbons, analysis of the interfacial structure and bonding was neglected. We report on a comprehensive photoelectron spectroscopy and photoelectron diffraction study that reveals the weak interaction of silicon nano-ribbons with the underlying silver substrate identifying the specific locations of the individual silicon, as well as silver atoms. Furthermore, we provide unique experimental evidence that clarifies the origin of the two distinct chemically shifted components in the silicon photoelectron spectra.File | Dimensione | Formato | |
---|---|---|---|
Espeter_2017_Nanotechnology_28_455701-2.pdf
Accesso chiuso
Descrizione: articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.32 MB
Formato
Adobe PDF
|
2.32 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.