Sensitivity analysis is an important component of model building, interpretation and validation. A model comprises a vector of random input factors, an aggregation function mapping input factors to a random output, and a (baseline) probability measure. A risk measure, such as Value-at-Risk and Expected Shortfall, maps the distribution of the output to the real line. As is common in risk management, the value of the risk measure applied to the output is a decision variable. Therefore, it is of interest to associate a critical increase in the risk measure to specific input factors. We propose a global and model-independent framework, termed ‘reverse sensitivity testing’, comprising three steps: (a) an output stress is specified, corresponding to an increase in the risk measure(s); (b) a (stressed) probability measure is derived, minimising the Kullback–Leibler divergence with respect to the baseline probability, under constraints generated by the output stress; (c) changes in the distributions of input factors are evaluated. We argue that a substantial change in the distribution of an input factor corresponds to high sensitivity to that input and introduce a novel sensitivity measure to formalise this insight. Implementation of reverse sensitivity testing in a Monte Carlo setting can be performed on a single set of input/output scenarios, simulated under the baseline model. Thus the approach circumvents the need for additional computationally expensive evaluations of the aggregation function. We illustrate the proposed approach through numerical examples with a simple insurance portfolio and a model of a London Insurance Market portfolio used in industry.

Reverse sensitivity testing: What does it take to break the model?

Millossovich P.;
2019-01-01

Abstract

Sensitivity analysis is an important component of model building, interpretation and validation. A model comprises a vector of random input factors, an aggregation function mapping input factors to a random output, and a (baseline) probability measure. A risk measure, such as Value-at-Risk and Expected Shortfall, maps the distribution of the output to the real line. As is common in risk management, the value of the risk measure applied to the output is a decision variable. Therefore, it is of interest to associate a critical increase in the risk measure to specific input factors. We propose a global and model-independent framework, termed ‘reverse sensitivity testing’, comprising three steps: (a) an output stress is specified, corresponding to an increase in the risk measure(s); (b) a (stressed) probability measure is derived, minimising the Kullback–Leibler divergence with respect to the baseline probability, under constraints generated by the output stress; (c) changes in the distributions of input factors are evaluated. We argue that a substantial change in the distribution of an input factor corresponds to high sensitivity to that input and introduce a novel sensitivity measure to formalise this insight. Implementation of reverse sensitivity testing in a Monte Carlo setting can be performed on a single set of input/output scenarios, simulated under the baseline model. Thus the approach circumvents the need for additional computationally expensive evaluations of the aggregation function. We illustrate the proposed approach through numerical examples with a simple insurance portfolio and a model of a London Insurance Market portfolio used in industry.
File in questo prodotto:
File Dimensione Formato  
Millossovich_Reverse sensitivity testing.pdf

Accesso chiuso

Descrizione: articolo
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.7 MB
Formato Adobe PDF
2.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Millossovich_Reverse sensitivity testing_postprint.pdf

Open Access dal 11/10/2020

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2938831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact