This paper presents a droop-based distributed control strategy for multithree-phase machines that provides augmented controllability during power sharing transients. The proposed strategy is able to mitigate the mutual interactions among different sets of windings without controlling any subspace variable, also offering a modular and redundant design. On the contrary, in a centralized configuration, subspaces would be controlled using the vector space decomposition, but fault tolerance and reliability levels required by the stricter regulations and policies expected in future transportation systems would not be satisfied. The proposed method is analytically compared against the state-of-the-art power sharing technique and equivalent models and control design procedures have been derived and considered in the comparison. Uncontrolled power sharing transients and their effects on mutual couplings among isolated sets of windings have been compared against the proposed regulated ones. Experimental results on a 22-kW nine-phase multithree-phase synchronous machine rig validate the design procedures showing good agreement with the expected performances.

Enhanced power sharing transient with droop controllers for multithree-phase synchronous electrical machines

Degano, Michele;Tessarolo, Alberto;Menis, Roberto
2019-01-01

Abstract

This paper presents a droop-based distributed control strategy for multithree-phase machines that provides augmented controllability during power sharing transients. The proposed strategy is able to mitigate the mutual interactions among different sets of windings without controlling any subspace variable, also offering a modular and redundant design. On the contrary, in a centralized configuration, subspaces would be controlled using the vector space decomposition, but fault tolerance and reliability levels required by the stricter regulations and policies expected in future transportation systems would not be satisfied. The proposed method is analytically compared against the state-of-the-art power sharing technique and equivalent models and control design procedures have been derived and considered in the comparison. Uncontrolled power sharing transients and their effects on mutual couplings among isolated sets of windings have been compared against the proposed regulated ones. Experimental results on a 22-kW nine-phase multithree-phase synchronous machine rig validate the design procedures showing good agreement with the expected performances.
2019
Pubblicato
https://ieeexplore.ieee.org/document/8456680
File in questo prodotto:
File Dimensione Formato  
IEEE TIE.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2943313_IEEE TIE-PostPrint.pdf

accesso aperto

Descrizione: Post Print VQR3
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 3.4 MB
Formato Adobe PDF
3.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2943313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact