We investigate the rational approximation of fractional powers of unbounded positive operators attainable with a specific integral representation of the operator function. We provide accurate error bounds by exploiting classical results in approximation theory involving Padé approximants. The analysis improves some existing results and the numerical experiments proves its accuracy.
Rational approximations to fractional powers of self-adjoint positive operators
Novati, Paolo
2019-01-01
Abstract
We investigate the rational approximation of fractional powers of unbounded positive operators attainable with a specific integral representation of the operator function. We provide accurate error bounds by exploiting classical results in approximation theory involving Padé approximants. The analysis improves some existing results and the numerical experiments proves its accuracy.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
NM_2019.pdf
Accesso chiuso
Descrizione: articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
516.05 kB
Formato
Adobe PDF
|
516.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2943867_NM_2019-PostPrint.pdf
accesso aperto
Descrizione: Post Print VQR3
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.