In this paper we study, for any subset $I$ of $mathbf{N}^{ast}$ and for any strictly positive integer $k$, the Banach space $E_{I}$ of the bounded real sequences $left{ x_{n} ight} _{nin I}$, and a measure over $left( mathbf{R}^{I},mathcal{B}^{(I)} ight) $ that generalizes the $k$-dimensional Lebesgue one. Moreover, we recall the main results about the differentiation theory over $E_{I}$. The main result of our paper is a change of variables' formula for the integration of the measurable real functions on $left( mathbf{R}^{I},mathcal{B}^{(I)} ight) $. This change of variables is defined by some functions over an open subset of $E_{J}$, with values on $E_{I}$, called $left( m,sigma ight) $-general, with properties that generalize the analogous ones of the finite-dimensional diffeomorphisms.

Change of variables' formula for the integration of the measurable real functions over infinite-dimensional Banach spaces

Claudio Asci
2019-01-01

Abstract

In this paper we study, for any subset $I$ of $mathbf{N}^{ast}$ and for any strictly positive integer $k$, the Banach space $E_{I}$ of the bounded real sequences $left{ x_{n} ight} _{nin I}$, and a measure over $left( mathbf{R}^{I},mathcal{B}^{(I)} ight) $ that generalizes the $k$-dimensional Lebesgue one. Moreover, we recall the main results about the differentiation theory over $E_{I}$. The main result of our paper is a change of variables' formula for the integration of the measurable real functions on $left( mathbf{R}^{I},mathcal{B}^{(I)} ight) $. This change of variables is defined by some functions over an open subset of $E_{J}$, with values on $E_{I}$, called $left( m,sigma ight) $-general, with properties that generalize the analogous ones of the finite-dimensional diffeomorphisms.
File in questo prodotto:
File Dimensione Formato  
5_Asci_61-103.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 348.38 kB
Formato Adobe PDF
348.38 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2945059
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact