Exosomes are one of the most important mediators of the cross talk occurring between glioma stem cells (GSCs) and the surrounding microenvironment. We have previously shown that exosomes released by patient-derived glioma-associated stem cells (GASC) are able to increase, in vitro, the aggressiveness of both GSC and glioblastoma cell lines. To understand which molecules are responsible for this tumour-supporting function, we performed a descriptive proteomic analysis of GASC-exosomes and identified, among the others, Semaphorin7A (SEMA7A). SEMA7A was described as a promigratory cue in physiological and pathological conditions, and we hypothesised that it could modulate GSC migratory properties. Here, we described that SEMA7A is exposed on GASC-exosomes’ surface and signals to GSC through Integrin β1. This interaction activates focal adhesion kinase into GSC and increases their motility, in our patient-based in vitro model. Our findings suggest SEMA7A-β1-integrin as a new target to disrupt the communication between GSCs and the supporting microenvironment.
Semaphorin-7A on Exosomes: A Promigratory Signal in the Glioma Microenvironment
Sgarra R;CAPONNETTO, EDMEA FRANCESCA ADELAIDE;DI LORETO, CARLA;Manfioletti G;
2019-01-01
Abstract
Exosomes are one of the most important mediators of the cross talk occurring between glioma stem cells (GSCs) and the surrounding microenvironment. We have previously shown that exosomes released by patient-derived glioma-associated stem cells (GASC) are able to increase, in vitro, the aggressiveness of both GSC and glioblastoma cell lines. To understand which molecules are responsible for this tumour-supporting function, we performed a descriptive proteomic analysis of GASC-exosomes and identified, among the others, Semaphorin7A (SEMA7A). SEMA7A was described as a promigratory cue in physiological and pathological conditions, and we hypothesised that it could modulate GSC migratory properties. Here, we described that SEMA7A is exposed on GASC-exosomes’ surface and signals to GSC through Integrin β1. This interaction activates focal adhesion kinase into GSC and increases their motility, in our patient-based in vitro model. Our findings suggest SEMA7A-β1-integrin as a new target to disrupt the communication between GSCs and the supporting microenvironment.File | Dimensione | Formato | |
---|---|---|---|
Manini 2019.pdf
accesso aperto
Descrizione: articolo principale This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.29 MB
Formato
Adobe PDF
|
2.29 MB | Adobe PDF | Visualizza/Apri |
cancers-11-00758-s001.pdf
accesso aperto
Descrizione: Supplementary material
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
246.57 kB
Formato
Adobe PDF
|
246.57 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.