Cellulose is a natural homopolymer, composed of β-1,4- anhydro-D-glucopyranose units. Unlike plant cellulose, bacterial cellulose (BC), obtained from species belonging to the genera of Acetobacter, Rhizobium, Agrobacterium, and Sarcina through various cultivation methods and techniques, is produced in its pure form. BC is produced in the form of gel-like, never dry sheet with tremendous mechanical properties. Containing up to 99% of water, BC hydrogel is considered biocompatible thus finding robust applications in the health industry. Moreover, BC three-dimensional structure closely resembles the extracellular matrix (ECM) of living tissue. In this review, we focus on the porous BC morphology particularly suited to host oxygen and nutrients thus providing conducive environment for cell growth and proliferation. The remarkable BC porous morphology makes this biological material a promising templet for the generation of 3D tissue culture and possibly for tissueengineered scaffolds.
The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications
Grassi M.;Grassi G.
2019-01-01
Abstract
Cellulose is a natural homopolymer, composed of β-1,4- anhydro-D-glucopyranose units. Unlike plant cellulose, bacterial cellulose (BC), obtained from species belonging to the genera of Acetobacter, Rhizobium, Agrobacterium, and Sarcina through various cultivation methods and techniques, is produced in its pure form. BC is produced in the form of gel-like, never dry sheet with tremendous mechanical properties. Containing up to 99% of water, BC hydrogel is considered biocompatible thus finding robust applications in the health industry. Moreover, BC three-dimensional structure closely resembles the extracellular matrix (ECM) of living tissue. In this review, we focus on the porous BC morphology particularly suited to host oxygen and nutrients thus providing conducive environment for cell growth and proliferation. The remarkable BC porous morphology makes this biological material a promising templet for the generation of 3D tissue culture and possibly for tissueengineered scaffolds.| File | Dimensione | Formato | |
|---|---|---|---|
|
Pubblished.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


