We consider a nonlinear Schrodinger equation (NLS) with a very general nonlinear term and with a trapping delta potential on the line. We then discuss the asymptotic behavior of all its small solutions, generalizing a recent result by Masaki, Murphy, and Segata [Anal. PDE, to appear] by means of virial-like inequalities. We give also a result of dispersion in the case of defocusing equations with a nontrapping delta potential.
ON STABILITY OF SMALL SOLITONS OF THE 1-D NLS WITH A TRAPPING DELTA POTENTIAL
Scipio Cuccagna
;
2019-01-01
Abstract
We consider a nonlinear Schrodinger equation (NLS) with a very general nonlinear term and with a trapping delta potential on the line. We then discuss the asymptotic behavior of all its small solutions, generalizing a recent result by Masaki, Murphy, and Segata [Anal. PDE, to appear] by means of virial-like inequalities. We give also a result of dispersion in the case of defocusing equations with a nontrapping delta potential.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Cuccagna and Maeda, SIMA 2019.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
392.44 kB
Formato
Adobe PDF
|
392.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Gen_1DNew_Version.pdf
accesso aperto
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
167.81 kB
Formato
Adobe PDF
|
167.81 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.