We analyze the geometric structure and properties of a certain class of subsets of R^d, here called multicones, which are natural generalizations of the classical cones. For them we introduce and investigate a suitable extension of the concept of duality, which allows us to treat in a convenient way many issues related to their invariance and strict invariance for real matrices.
Multicones, Duality and Matrix Invariance
Brundu, M
;Zennaro, M
2019-01-01
Abstract
We analyze the geometric structure and properties of a certain class of subsets of R^d, here called multicones, which are natural generalizations of the classical cones. For them we introduce and investigate a suitable extension of the concept of duality, which allows us to treat in a convenient way many issues related to their invariance and strict invariance for real matrices.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Brundu-Zennaro, JoCA26(2019), 1021-1052.pdf
Accesso chiuso
Descrizione: JoCA(2019)
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
187.06 kB
Formato
Adobe PDF
|
187.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.