We analyze the geometric structure and properties of a certain class of subsets of R^d, here called multicones, which are natural generalizations of the classical cones. For them we introduce and investigate a suitable extension of the concept of duality, which allows us to treat in a convenient way many issues related to their invariance and strict invariance for real matrices.

Multicones, Duality and Matrix Invariance

Brundu, M
;
Zennaro, M
2019-01-01

Abstract

We analyze the geometric structure and properties of a certain class of subsets of R^d, here called multicones, which are natural generalizations of the classical cones. For them we introduce and investigate a suitable extension of the concept of duality, which allows us to treat in a convenient way many issues related to their invariance and strict invariance for real matrices.
2019
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Brundu-Zennaro, JoCA26(2019), 1021-1052.pdf

Accesso chiuso

Descrizione: JoCA(2019)
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 187.06 kB
Formato Adobe PDF
187.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2957168
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact