We analyze the geometric structure and properties of a certain class of subsets of R^d, here called multicones, which are natural generalizations of the classical cones. For them we introduce and investigate a suitable extension of the concept of duality, which allows us to treat in a convenient way many issues related to their invariance and strict invariance for real matrices.
Titolo: | Multicones, Duality and Matrix Invariance | |
Autori: | ZENNARO, MARINO (Corresponding) | |
Data di pubblicazione: | 2019 | |
Stato di pubblicazione: | Pubblicato | |
Rivista: | ||
Abstract: | We analyze the geometric structure and properties of a certain class of subsets of R^d, here called multicones, which are natural generalizations of the classical cones. For them we introduce and investigate a suitable extension of the concept of duality, which allows us to treat in a convenient way many issues related to their invariance and strict invariance for real matrices. | |
Handle: | http://hdl.handle.net/11368/2957168 | |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Brundu-Zennaro, JoCA26(2019), 1021-1052.pdf | JoCA(2019) | Documento in Versione Editoriale | Copyright Editore | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.