A subclade of connexins comprising Cx26, Cx30, and Cx32 are directly sensitive to CO2. CO2 binds to a carbamylation motif present in these connexins and causes their hemichannels to open. Cx26 may contribute to CO2-dependent regulation of breathing in mammals. Here, we show that the carbamylation motif occurs in a wide range of non-mammalian vertebrates and was likely present in the ancestor of all gnathostomes. While the carbamylation motif is essential for connexin CO2-sensitivity, it is not sufficient. In Cx26 of amphibia and lungfish, an extended C-terminal tail prevents CO2-evoked hemichannel opening despite the presence of the motif. Although Cx32 has a long C-terminal tail, Cx32 hemichannels open to CO2 because the tail is conformationally restricted by the presence of proline residues. The loss of the C-terminal tail of Cx26 in amniotes was an evolutionary innovation that created a connexin hemichannel with CO2-sensing properties suitable for the regulation of breathing.

Structural determinants of CO2-sensitivity in the β connexin family suggested by evolutionary analysis

Gerdol, Marco;
2019-01-01

Abstract

A subclade of connexins comprising Cx26, Cx30, and Cx32 are directly sensitive to CO2. CO2 binds to a carbamylation motif present in these connexins and causes their hemichannels to open. Cx26 may contribute to CO2-dependent regulation of breathing in mammals. Here, we show that the carbamylation motif occurs in a wide range of non-mammalian vertebrates and was likely present in the ancestor of all gnathostomes. While the carbamylation motif is essential for connexin CO2-sensitivity, it is not sufficient. In Cx26 of amphibia and lungfish, an extended C-terminal tail prevents CO2-evoked hemichannel opening despite the presence of the motif. Although Cx32 has a long C-terminal tail, Cx32 hemichannels open to CO2 because the tail is conformationally restricted by the presence of proline residues. The loss of the C-terminal tail of Cx26 in amniotes was an evolutionary innovation that created a connexin hemichannel with CO2-sensing properties suitable for the regulation of breathing.
2019
Pubblicato
https://www.nature.com/articles/s42003-019-0576-2.
File in questo prodotto:
File Dimensione Formato  
Dospinescu_et_al-2019-Communications_Biology.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.69 MB
Formato Adobe PDF
4.69 MB Adobe PDF Visualizza/Apri
Supplementary material.pdf

accesso aperto

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 512.85 kB
Formato Adobe PDF
512.85 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2957230
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 16
social impact