Ineffective effort during expiration (IEE) occurs when there is a mismatch between the demand of a mechanically ventilated patient and the support delivered by a Mechanical ventilator during the expiration. This work presents a pressure–flow characterization for respiratory asynchronies and validates a machine-learning method, based on the presented characterization, to identify IEEs. 1500 breaths produced by 8 mechanically-ventilated patients were considered: 500 of them were included into the training set and the remaining 1000 into the test set. Each of them was evaluated by 3 experts and classified as either normal, artefact, or containing inspiratory, expiratory, or cycling-off asynchronies. A software implementing the proposed method was trained by using the experts’ evaluations of the training set and used to identify IEEs in the test set. The outcomes were compared with a consensus of three expert evaluations. The software classified IEEs with sensitivity 0.904, specificity 0.995, accuracy 0.983, positive and negative predictive value 0.963 and 0.986, respectively. The Cohen’s kappa is 0.983 (with 95% confidence interval (CI): [0.884, 0.962]). The pressure–flow characterization of respiratory cycles and the monitoring technique proposed in this work automatically identified IEEs in real-time in close agreement with the experts.
An effective pressure–flow characterization of respiratory asynchronies in mechanical ventilation
Alberto Casagrande
;Francesco Quintavalle;Massimo Ferluga;Enrico Lena;Francesco Fabris;Umberto Lucangelo
2020-01-01
Abstract
Ineffective effort during expiration (IEE) occurs when there is a mismatch between the demand of a mechanically ventilated patient and the support delivered by a Mechanical ventilator during the expiration. This work presents a pressure–flow characterization for respiratory asynchronies and validates a machine-learning method, based on the presented characterization, to identify IEEs. 1500 breaths produced by 8 mechanically-ventilated patients were considered: 500 of them were included into the training set and the remaining 1000 into the test set. Each of them was evaluated by 3 experts and classified as either normal, artefact, or containing inspiratory, expiratory, or cycling-off asynchronies. A software implementing the proposed method was trained by using the experts’ evaluations of the training set and used to identify IEEs in the test set. The outcomes were compared with a consensus of three expert evaluations. The software classified IEEs with sensitivity 0.904, specificity 0.995, accuracy 0.983, positive and negative predictive value 0.963 and 0.986, respectively. The Cohen’s kappa is 0.983 (with 95% confidence interval (CI): [0.884, 0.962]). The pressure–flow characterization of respiratory cycles and the monitoring technique proposed in this work automatically identified IEEs in real-time in close agreement with the experts.File | Dimensione | Formato | |
---|---|---|---|
AsyncLess.pdf
Open Access dal 30/01/2021
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Copyright Editore
Dimensione
356.51 kB
Formato
Adobe PDF
|
356.51 kB | Adobe PDF | Visualizza/Apri |
Casagrande2020_Article_AnEffectivePressureFlowCharact.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
751.3 kB
Formato
Adobe PDF
|
751.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.