The increasing emergence of multidrug-resistant microorganisms represents one of the greatest challenges in the clinical management of infectious diseases, and requires the development of novel antimicrobial agents. To this aim, we de novo designed a library of Arg-rich ultra-short cationic antimicrobial lipopeptides (USCLs), based on the Arg-X-Trp-Arg-NH 2 peptide moiety conjugated with a fatty acid, and investigated their antibacterial potential. USCLs exhibited an excellent antimicrobial activity against clinically pathogenic microorganisms, in particular Gram-positive bacteria, including multidrug resistant strains, with MIC values ranging between 1.56 and 6.25 μg/mL. The capability of the two most active molecules, Lau-RIWR-NH 2 and Lau-RRIWRR-NH 2 to interact with the bacterial membranes has been predicted by molecular dynamics and verified on liposomes by surface plasmon resonance. Both compounds inhibited the growth of S. aureus even at sub MIC concentrations and induced cell membranes permeabilization by producing visible cell surface alterations leading to a significant decrease in bacterial viability. Interestingly, no cytotoxic effects were evidenced for these lipopeptides up to 50–100 μg/mL in hemolysis assay, in human epidermal model and HaCaT cells, thus highlighting a good cell selectivity. These results, together with the simple composition of USCLs, make them promising lead compounds as new antimicrobials.

Design, antimicrobial activity and mechanism of action of Arg-rich ultra-short cationic lipopeptides

Pacor S.
Membro del Collaboration Group
;
Guida F.
Membro del Collaboration Group
;
Scocchi M.
Membro del Collaboration Group
;
Benincasa M.
Supervision
2019

Abstract

The increasing emergence of multidrug-resistant microorganisms represents one of the greatest challenges in the clinical management of infectious diseases, and requires the development of novel antimicrobial agents. To this aim, we de novo designed a library of Arg-rich ultra-short cationic antimicrobial lipopeptides (USCLs), based on the Arg-X-Trp-Arg-NH 2 peptide moiety conjugated with a fatty acid, and investigated their antibacterial potential. USCLs exhibited an excellent antimicrobial activity against clinically pathogenic microorganisms, in particular Gram-positive bacteria, including multidrug resistant strains, with MIC values ranging between 1.56 and 6.25 μg/mL. The capability of the two most active molecules, Lau-RIWR-NH 2 and Lau-RRIWRR-NH 2 to interact with the bacterial membranes has been predicted by molecular dynamics and verified on liposomes by surface plasmon resonance. Both compounds inhibited the growth of S. aureus even at sub MIC concentrations and induced cell membranes permeabilization by producing visible cell surface alterations leading to a significant decrease in bacterial viability. Interestingly, no cytotoxic effects were evidenced for these lipopeptides up to 50–100 μg/mL in hemolysis assay, in human epidermal model and HaCaT cells, thus highlighting a good cell selectivity. These results, together with the simple composition of USCLs, make them promising lead compounds as new antimicrobials.
Pubblicato
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212447
File in questo prodotto:
File Dimensione Formato  
journal.pone.0212447.pdf

accesso aperto

Descrizione: This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri
supplementary files.pdf

accesso aperto

Descrizione: Supplementary files
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2962017
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact