The activation of signals in fluorescent nanosensors upon interaction with their targets is highly desirable. To this aim, several molecularly imprinted nanogels have been synthetized for the recognition of tyrosol, hydroxytyrosol and oleuropein in aqueous extracts using the non-covalent approach. Two of them contain fluorescein derivatives as co-monomers, and their fluorescence emission is switched on upon binding of the target phenols. The selection of functional monomers was previously done by analyzing the interactions by nuclear magnetic resonance (NMR) in deuterated dimethylsulfoxide (DMSO-d6) of the monomers with tyrosol and hydroxytyrosol. Polymers were synthetized under high dilution conditions to obtain micro- and nano-particles, as verified by transmission electron microscopy (TEM). 1,4-Divinylbenzene (DVB) was used in the fluorescent polymers in order to enhance the interactions with the aromatic ring of the templates tyrosol and hydroxytyrosol by π-π stacking. The results were fully satisfactory as to rebinding: DVB-crosslinked molecularly imprinted polymers (MIPs) gave over 50 nmol/mg rebinding. The sensitivity of the fluorescent MIPs was excellent, with LODs in the pM range. The sensing polymers were tested on real olive leaves extracts, with very good performance and negligible matrix effects.

Signal-On Fluorescent Imprinted Nanoparticles for Sensing of Phenols in Aqueous Olive Leaves Extracts

Stavro Santarosa, Ada;Berti, Federico;Tommasini, Martina;Calabretti, Antonella;Forzato, Cristina
2020-01-01

Abstract

The activation of signals in fluorescent nanosensors upon interaction with their targets is highly desirable. To this aim, several molecularly imprinted nanogels have been synthetized for the recognition of tyrosol, hydroxytyrosol and oleuropein in aqueous extracts using the non-covalent approach. Two of them contain fluorescein derivatives as co-monomers, and their fluorescence emission is switched on upon binding of the target phenols. The selection of functional monomers was previously done by analyzing the interactions by nuclear magnetic resonance (NMR) in deuterated dimethylsulfoxide (DMSO-d6) of the monomers with tyrosol and hydroxytyrosol. Polymers were synthetized under high dilution conditions to obtain micro- and nano-particles, as verified by transmission electron microscopy (TEM). 1,4-Divinylbenzene (DVB) was used in the fluorescent polymers in order to enhance the interactions with the aromatic ring of the templates tyrosol and hydroxytyrosol by π-π stacking. The results were fully satisfactory as to rebinding: DVB-crosslinked molecularly imprinted polymers (MIPs) gave over 50 nmol/mg rebinding. The sensitivity of the fluorescent MIPs was excellent, with LODs in the pM range. The sensing polymers were tested on real olive leaves extracts, with very good performance and negligible matrix effects.
File in questo prodotto:
File Dimensione Formato  
nanomaterials-10-01011-v2.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.75 MB
Formato Adobe PDF
3.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2966900
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact