In this paper, we provide a characterization of the existence of a representation of an interval order on a topological space in the general case bymeans of a pair of continuous functions, when neither the functions nor the topological space are required to satisfy any particular assumptions. Such a characterization is based on a suitable continuity assumption of the binary relation, called weak continuity. In this way, we generalize all the previous results on the continuous representability of interval orders, and also of total preorders, as particular cases.

Continuous Representations of Interval Orders by Means of Two Continuous Functions

Bosi, Gianni;Estevan, Asier
2020-01-01

Abstract

In this paper, we provide a characterization of the existence of a representation of an interval order on a topological space in the general case bymeans of a pair of continuous functions, when neither the functions nor the topological space are required to satisfy any particular assumptions. Such a characterization is based on a suitable continuity assumption of the binary relation, called weak continuity. In this way, we generalize all the previous results on the continuous representability of interval orders, and also of total preorders, as particular cases.
File in questo prodotto:
File Dimensione Formato  
ContinuousIntervalRepresentationJotaRevised.pdf

accesso aperto

Descrizione: PreprintJota2020
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 292.58 kB
Formato Adobe PDF
292.58 kB Adobe PDF Visualizza/Apri
Bosi_Continuous Representations of Interval Orders.pdf

Accesso chiuso

Descrizione: articolo
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 273.95 kB
Formato Adobe PDF
273.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2967523
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact