Supersymmetry transformations change the Lagrangian [InlineMediaObject not available: see fulltext.] into a total derivative [InlineMediaObject not available: see fulltext.]. On manifolds with boundaries the total derivative term is an obstruction to preserving supersymmetry. Such total derivative terms can be canceled by a boundary action without specifying boundary conditions, but only for a subalgebra of supersymmetry. We study compensating boundary actions for (Formula presented.) supersymmetry in 4d, and show that they are determined independently of the details of the theory and of the boundary conditions. Two distinct classes of boundary actions exist, which correspond to preserving either a linear combination of supercharges of opposite chirality (called A-type) or supercharges of opposite chirality independently (B-type). The first option preserves a subalgebra isomorphic to (Formula presented.) in 3d, while the second preserves only a 2d subgroup of the Lorentz symmetry and a subalgebra isomorphic to (Formula presented.) in 2d. These subalgebras are in one to one correspondence with half-BPS objects: the A-type corresponds to domain walls while the B-type corresponds to strings. We show that integrating the full current algebra and taking into account boundary contributions leads to an energy-momentum tensor which contains the boundary terms. The boundary terms come from the domain wall and string currents in the two respective cases.
On supersymmetry, boundary actions and brane charges
Di Pietro L.;
2016-01-01
Abstract
Supersymmetry transformations change the Lagrangian [InlineMediaObject not available: see fulltext.] into a total derivative [InlineMediaObject not available: see fulltext.]. On manifolds with boundaries the total derivative term is an obstruction to preserving supersymmetry. Such total derivative terms can be canceled by a boundary action without specifying boundary conditions, but only for a subalgebra of supersymmetry. We study compensating boundary actions for (Formula presented.) supersymmetry in 4d, and show that they are determined independently of the details of the theory and of the boundary conditions. Two distinct classes of boundary actions exist, which correspond to preserving either a linear combination of supercharges of opposite chirality (called A-type) or supercharges of opposite chirality independently (B-type). The first option preserves a subalgebra isomorphic to (Formula presented.) in 3d, while the second preserves only a 2d subgroup of the Lorentz symmetry and a subalgebra isomorphic to (Formula presented.) in 2d. These subalgebras are in one to one correspondence with half-BPS objects: the A-type corresponds to domain walls while the B-type corresponds to strings. We show that integrating the full current algebra and taking into account boundary contributions leads to an energy-momentum tensor which contains the boundary terms. The boundary terms come from the domain wall and string currents in the two respective cases.File | Dimensione | Formato | |
---|---|---|---|
Pietro2016_Article_OnSupersymmetryBoundaryActions.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
618.16 kB
Formato
Adobe PDF
|
618.16 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.