We prove a result of Ambrosetti-Prodi type for the scalar periodic ODE $x'=f(t,x)-s$, where, seemingly for the first time in the literature, $f(cdot,x) $ is allowed to have indefinite sign as $|x| o+infty$. Our result requires that $f$ satisfies a one-sided growth control; in case such a control fails, non-existence occurs for large $s>0$, although multiplicity of solutions can still be detected provided $f(cdot,0)=0$ and $s>0$ is small enough.
On the periodic Ambrosetti–Prodi problem for a class of ODEs with nonlinearities indefinite in sign
Obersnel, Franco;Omari, Pierpaolo
2020-01-01
Abstract
We prove a result of Ambrosetti-Prodi type for the scalar periodic ODE $x'=f(t,x)-s$, where, seemingly for the first time in the literature, $f(cdot,x) $ is allowed to have indefinite sign as $|x| o+infty$. Our result requires that $f$ satisfies a one-sided growth control; in case such a control fails, non-existence occurs for large $s>0$, although multiplicity of solutions can still be detected provided $f(cdot,0)=0$ and $s>0$ is small enough.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ObOm_AP_revised.pdf
Open Access dal 07/07/2022
Descrizione: Post print
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
285.55 kB
Formato
Adobe PDF
|
285.55 kB | Adobe PDF | Visualizza/Apri |
ObOmAML.pdf
Accesso chiuso
Descrizione: Pdf editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
659.28 kB
Formato
Adobe PDF
|
659.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.