We prove a result of Ambrosetti-Prodi type for the scalar periodic ODE $x'=f(t,x)-s$, where, seemingly for the first time in the literature, $f(cdot,x) $ is allowed to have indefinite sign as $|x| o+infty$. Our result requires that $f$ satisfies a one-sided growth control; in case such a control fails, non-existence occurs for large $s>0$, although multiplicity of solutions can still be detected provided $f(cdot,0)=0$ and $s>0$ is small enough.

On the periodic Ambrosetti–Prodi problem for a class of ODEs with nonlinearities indefinite in sign

Obersnel, Franco;Omari, Pierpaolo
2020-01-01

Abstract

We prove a result of Ambrosetti-Prodi type for the scalar periodic ODE $x'=f(t,x)-s$, where, seemingly for the first time in the literature, $f(cdot,x) $ is allowed to have indefinite sign as $|x| o+infty$. Our result requires that $f$ satisfies a one-sided growth control; in case such a control fails, non-existence occurs for large $s>0$, although multiplicity of solutions can still be detected provided $f(cdot,0)=0$ and $s>0$ is small enough.
File in questo prodotto:
File Dimensione Formato  
ObOm_AP_revised.pdf

Open Access dal 07/07/2022

Descrizione: Post print
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 285.55 kB
Formato Adobe PDF
285.55 kB Adobe PDF Visualizza/Apri
ObOmAML.pdf

Accesso chiuso

Descrizione: Pdf editoriale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 659.28 kB
Formato Adobe PDF
659.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2969071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact