Off-line supervised learning from data of robustly-stabilizing nonlinear explicit model predictive controllers (EMPC) is dealt with in this letter. The learning procedure relies on the construction of a suitably large set of specifically chosen sampling points of the state space in which the values of the optimal EMPC control function have to be computed. When bounding the magnitude of approximation errors is important for stability or performance specifications, regular gridding techniques are not feasible due to the curse of dimensionality arising from the structural exponential growth of the number of points with the state dimension. In this note, we consider non-regular sampling techniques – namely, i.i.d. sampling with uniform distribution, low-discrepancy sequences and lattice point sets – that offer a good covering of the state space without suffering from an unfeasible growth of the number of points, while preserving at the same time the method guarantees in terms of robustness and stability. Some theoretical properties of the proposed sampling schemes are briefly discussed, and their successful application is showcased in a practically-relevant optimal heating problem involving a 21-dimensional state space that rules out the use of regular gridding techniques.

Learning Robustly Stabilizing Explicit Model Predictive Controllers: A Non-Regular Sampling Approach

T. Parisini
Membro del Collaboration Group
2020-01-01

Abstract

Off-line supervised learning from data of robustly-stabilizing nonlinear explicit model predictive controllers (EMPC) is dealt with in this letter. The learning procedure relies on the construction of a suitably large set of specifically chosen sampling points of the state space in which the values of the optimal EMPC control function have to be computed. When bounding the magnitude of approximation errors is important for stability or performance specifications, regular gridding techniques are not feasible due to the curse of dimensionality arising from the structural exponential growth of the number of points with the state dimension. In this note, we consider non-regular sampling techniques – namely, i.i.d. sampling with uniform distribution, low-discrepancy sequences and lattice point sets – that offer a good covering of the state space without suffering from an unfeasible growth of the number of points, while preserving at the same time the method guarantees in terms of robustness and stability. Some theoretical properties of the proposed sampling schemes are briefly discussed, and their successful application is showcased in a practically-relevant optimal heating problem involving a 21-dimensional state space that rules out the use of regular gridding techniques.
File in questo prodotto:
File Dimensione Formato  
Cervellera_Maccio_Parisini_L-CSS_Accepted_30_3_2020.pdf

accesso aperto

Descrizione: © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Link to publisher's version: https://ieeexplore.ieee.org/document/9060827
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Copyright Editore
Dimensione 340.88 kB
Formato Adobe PDF
340.88 kB Adobe PDF Visualizza/Apri
Cervellera_Maccio_Parisini_L-CSS_2020.pdf

Accesso chiuso

Descrizione: Articolo pubblicato
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 529.74 kB
Formato Adobe PDF
529.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2971408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact