The distinction of secondary particles in extensive air showers, specifically muons and electrons, is one of the requirements to perform a good measurement of the composition of primary cosmic rays. We describe two methods for pulse shape detection and discrimination of muons and electrons implemented on FPGA. One uses an artificial neural network (ANN) algorithm; the other exploits a correlation approach based on finite impulse response (FIR) filters. The novel hls4ml package is used to build the ANN inference model. Both methods were implemented and tested on Xilinx FPGA System on Chip (SoC) devices: ZU9EG Zynq UltraScale+ and ZC7Z020 Zynq. The data set used for the analysis was captured with a data acquisition system on an experimental site based on a water Cherenkov detector. A comparison of the accuracy of the detection, resources utilization and power consumption of both methods is presented. The results show an overall accuracy on particle discrimination of 96.62% for the ANN and 92.50% for the FIR-based correlation, with execution times of 848 ns and 752 ns, respectively.

Muon–Electron Pulse Shape Discrimination for Water Cherenkov Detectors Based on FPGA/SoC

Garcia, Luis Guillermo
;
Molina, Romina Soledad
;
Carrato, Sergio;Ramponi, Giovanni;
2021-01-01

Abstract

The distinction of secondary particles in extensive air showers, specifically muons and electrons, is one of the requirements to perform a good measurement of the composition of primary cosmic rays. We describe two methods for pulse shape detection and discrimination of muons and electrons implemented on FPGA. One uses an artificial neural network (ANN) algorithm; the other exploits a correlation approach based on finite impulse response (FIR) filters. The novel hls4ml package is used to build the ANN inference model. Both methods were implemented and tested on Xilinx FPGA System on Chip (SoC) devices: ZU9EG Zynq UltraScale+ and ZC7Z020 Zynq. The data set used for the analysis was captured with a data acquisition system on an experimental site based on a water Cherenkov detector. A comparison of the accuracy of the detection, resources utilization and power consumption of both methods is presented. The results show an overall accuracy on particle discrimination of 96.62% for the ANN and 92.50% for the FIR-based correlation, with execution times of 848 ns and 752 ns, respectively.
2021
12-gen-2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
electronics-10-00224-v2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2979231
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact