Increased frequency of tree mortality and forest decline due to anomalous drought events calls for the adoption of eective monitoring of tree water status over large spatial and temporal scales. We correlated field-measured and remotely sensed plant water status parameters, to test the possibility of monitoring the risk of drought-induced dehydration and hydraulic failure using satellite images calibrated on reliable physiological indicators of tree hydraulics. The study was conducted during summer 2019 in the Karst plateau (NE Italy) in a woodland dominated by Fraxinus ornus L.; Sentinel-2 images were acquired on a seasonal scale on the same dates when absolute water content (AbWC), relative water content (RWC), and minimum water potential (Ymin) were measured in the field. Plant water status parameters were correlated with normalized dierence vegetation index (NDVI and NDVI 8A), normalized dierence water index (NDWI), and soil-adjusted vegetation index (SAVI). Significant Pearson and Spearman linear correlations (α < 0.05) emerged between all tree-level measured variables and NDWI, while for NDVI, NDVI 8A, and SAVI no correlation was found. Our results suggest the possibility of using the NDWI as a proxy of tree water content and water potential.
Correlation of field-measured and remotely sensed plant water status as a tool to monitor the risk of drought-induced forest decline
Marusig D.;Petruzzellis F.;Tomasella M.;Napolitano R.;Altobelli A.;Nardini A.
2020-01-01
Abstract
Increased frequency of tree mortality and forest decline due to anomalous drought events calls for the adoption of eective monitoring of tree water status over large spatial and temporal scales. We correlated field-measured and remotely sensed plant water status parameters, to test the possibility of monitoring the risk of drought-induced dehydration and hydraulic failure using satellite images calibrated on reliable physiological indicators of tree hydraulics. The study was conducted during summer 2019 in the Karst plateau (NE Italy) in a woodland dominated by Fraxinus ornus L.; Sentinel-2 images were acquired on a seasonal scale on the same dates when absolute water content (AbWC), relative water content (RWC), and minimum water potential (Ymin) were measured in the field. Plant water status parameters were correlated with normalized dierence vegetation index (NDVI and NDVI 8A), normalized dierence water index (NDWI), and soil-adjusted vegetation index (SAVI). Significant Pearson and Spearman linear correlations (α < 0.05) emerged between all tree-level measured variables and NDWI, while for NDVI, NDVI 8A, and SAVI no correlation was found. Our results suggest the possibility of using the NDWI as a proxy of tree water content and water potential.File | Dimensione | Formato | |
---|---|---|---|
forests-11-00077-v2.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.81 MB
Formato
Adobe PDF
|
2.81 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.