The development of trajectory-based operations and the rolling network operations plan in European air traffic management network implies a move towards more collaborative, strategic flight planning. This opens up the possibility for inclusion of additional information in the collaborative decision-making process. With that in mind, we define the indicator for the economic risk of network elements (e.g., sectors or airports) as the expected costs that the elements impose on airspace users due to Air Traffic Flow Management (ATFM) regulations. The definition of the indicator is based on the analysis of historical ATFM regulations data, that provides an indication of the risk of accruing delay. This risk of delay is translated into a monetary risk for the airspace users, creating the new metric of the economic risk of a given airspace element. We then use some machine learning techniques to find the parameters leading to this economic risk. The metric is accompanied by an indication of the accuracy of the delay–cost prediction model. Lastly, the economic risk is transformed into a qualitative economic severity classification. The economic risks and consequently economic severity can be estimated for different temporal horizons and time periods providing an indicator which can be used by Air Navigation Service Providers to identify areas which might need the implementation of strategic measures (e.g., resectorisation or capacity provision change), and by Airspace Users to consider operation of routes which use specific airspace regions.

Estimating economic severity of Air Traffic Flow Management regulations

Bolic T.
;
Castelli L.
2021-01-01

Abstract

The development of trajectory-based operations and the rolling network operations plan in European air traffic management network implies a move towards more collaborative, strategic flight planning. This opens up the possibility for inclusion of additional information in the collaborative decision-making process. With that in mind, we define the indicator for the economic risk of network elements (e.g., sectors or airports) as the expected costs that the elements impose on airspace users due to Air Traffic Flow Management (ATFM) regulations. The definition of the indicator is based on the analysis of historical ATFM regulations data, that provides an indication of the risk of accruing delay. This risk of delay is translated into a monetary risk for the airspace users, creating the new metric of the economic risk of a given airspace element. We then use some machine learning techniques to find the parameters leading to this economic risk. The metric is accompanied by an indication of the accuracy of the delay–cost prediction model. Lastly, the economic risk is transformed into a qualitative economic severity classification. The economic risks and consequently economic severity can be estimated for different temporal horizons and time periods providing an indicator which can be used by Air Navigation Service Providers to identify areas which might need the implementation of strategic measures (e.g., resectorisation or capacity provision change), and by Airspace Users to consider operation of routes which use specific airspace regions.
File in questo prodotto:
File Dimensione Formato  
Delgado_TRC_125_103054.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2112.11263.pdf

accesso aperto

Descrizione: post print su Arxiv
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2991451
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact