In the present paper, we study the fast rotation limit for the density-dependent incompressible Euler equations in two space dimensions with the presence of the Coriolis force. In the case when the initial densities are small perturbation of a constant profile, we show the convergence of solutions towards the solutions of a quasi-homogeneous incompressible Euler system. The proof relies on a combination of uniform estimates in high regularity norms with a compensated compactness argument for passing to the limit. This technique allows us to treat the case of ill-prepared initial data.
Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations
Gabriele Sbaiz
2022-01-01
Abstract
In the present paper, we study the fast rotation limit for the density-dependent incompressible Euler equations in two space dimensions with the presence of the Coriolis force. In the case when the initial densities are small perturbation of a constant profile, we show the convergence of solutions towards the solutions of a quasi-homogeneous incompressible Euler system. The proof relies on a combination of uniform estimates in high regularity norms with a compensated compactness argument for passing to the limit. This technique allows us to treat the case of ill-prepared initial data.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0022247X22001548-main.pdf
Accesso chiuso
Descrizione: Articolo in Rivista
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
746.28 kB
Formato
Adobe PDF
|
746.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2991819_1-s2.0-S0022247X22001548-main-Post_print.pdf
Open Access dal 05/03/2024
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.