In the present paper, we study the fast rotation limit for the density-dependent incompressible Euler equations in two space dimensions with the presence of the Coriolis force. In the case when the initial densities are small perturbation of a constant profile, we show the convergence of solutions towards the solutions of a quasi-homogeneous incompressible Euler system. The proof relies on a combination of uniform estimates in high regularity norms with a compensated compactness argument for passing to the limit. This technique allows us to treat the case of ill-prepared initial data.

Fast rotation limit for the 2-D non-homogeneous incompressible Euler equations

Gabriele Sbaiz
2022-01-01

Abstract

In the present paper, we study the fast rotation limit for the density-dependent incompressible Euler equations in two space dimensions with the presence of the Coriolis force. In the case when the initial densities are small perturbation of a constant profile, we show the convergence of solutions towards the solutions of a quasi-homogeneous incompressible Euler system. The proof relies on a combination of uniform estimates in high regularity norms with a compensated compactness argument for passing to the limit. This technique allows us to treat the case of ill-prepared initial data.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X22001548-main.pdf

Accesso chiuso

Descrizione: Articolo in Rivista
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 746.28 kB
Formato Adobe PDF
746.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2991819_1-s2.0-S0022247X22001548-main-Post_print.pdf

Open Access dal 05/03/2024

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2991819
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact