CaSiO3 polymorphs are abundant in only unique geological settings on the Earth’s surface and are the major Ca-bearing phases at deep mantle condition. An accurate and comprehensive study of their density and structural evolution with pressure and temperature is still lacking. Therefore, in this study we report the elastic behavior and structural evolution of wollastonite and CaSiO3-walstromite with pressure. Both minerals are characterized by first order phase transitions to denser structures. The deformations that lead to these transformations allow a volume increase ofthe bigger polyhedra, which might ease cation substitution in the structural sites of these phases. Furthermore, their geometrical features are clear analogies with those predicted and observed for tetrahedrally-structured ultra-high-pressure carbonates, which are unfortunately unquenchable. Indeed, wollastonite and CaSiO3-walstromite have a close resemblance to ultra-high-pressure chain- and ring-carbonates. This suggests a rich polymorphism also for tetrahedral carbonates, which might increase the compositional range of these phases, including continuous solid solutions involving cations with different size (Ca vs. Mg in particular) and important minor or trace elements incorporation.

Crystal Structure Evolution of CaSiO3 Polymorphs at Earth’s Mantle Pressures

Ziberna, Luca;
2021-01-01

Abstract

CaSiO3 polymorphs are abundant in only unique geological settings on the Earth’s surface and are the major Ca-bearing phases at deep mantle condition. An accurate and comprehensive study of their density and structural evolution with pressure and temperature is still lacking. Therefore, in this study we report the elastic behavior and structural evolution of wollastonite and CaSiO3-walstromite with pressure. Both minerals are characterized by first order phase transitions to denser structures. The deformations that lead to these transformations allow a volume increase ofthe bigger polyhedra, which might ease cation substitution in the structural sites of these phases. Furthermore, their geometrical features are clear analogies with those predicted and observed for tetrahedrally-structured ultra-high-pressure carbonates, which are unfortunately unquenchable. Indeed, wollastonite and CaSiO3-walstromite have a close resemblance to ultra-high-pressure chain- and ring-carbonates. This suggests a rich polymorphism also for tetrahedral carbonates, which might increase the compositional range of these phases, including continuous solid solutions involving cations with different size (Ca vs. Mg in particular) and important minor or trace elements incorporation.
2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
minerals-11-00652-v3.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2993918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact