In this paper we give a new and simplified proof of the theorem on selection of standing waves for small energy solutions of the nonlinear Schrödinger equations (NLS) that we gave in [6]. We consider a NLS with a Schrödinger operator with several eigenvalues, with corresponding families of small standing waves, and we show that any small energy solution converges to the orbit of a time periodic solution plus a scattering term. The novel idea is to consider the “refined profile”, a quasi–periodic function in time which almost solves the NLS and encodes the discrete modes of a solution. The refined profile, obtained by elementary means, gives us directly an optimal coordinate system, avoiding the normal form arguments in [6], giving us also a better understanding of the Fermi Golden Rule.
Coordinates at Small Energy and Refined Profiles for the Nonlinear Schrödinger Equation
Cuccagna S.;Maeda M.
2021-01-01
Abstract
In this paper we give a new and simplified proof of the theorem on selection of standing waves for small energy solutions of the nonlinear Schrödinger equations (NLS) that we gave in [6]. We consider a NLS with a Schrödinger operator with several eigenvalues, with corresponding families of small standing waves, and we show that any small energy solution converges to the orbit of a time periodic solution plus a scattering term. The novel idea is to consider the “refined profile”, a quasi–periodic function in time which almost solves the NLS and encodes the discrete modes of a solution. The refined profile, obtained by elementary means, gives us directly an optimal coordinate system, avoiding the normal form arguments in [6], giving us also a better understanding of the Fermi Golden Rule.File | Dimensione | Formato | |
---|---|---|---|
Annals_of_PDE_2021.pdf
accesso aperto
Descrizione: Articolo versione editoriale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
536.38 kB
Formato
Adobe PDF
|
536.38 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.