Recent experiments have revitalized the interest in a Fermi gas of ultracold atoms with strong repulsive interactions. In spite of its seeming simplicity, this system exhibits a complex behavior, resulting from the competing action of two distinct instabilities: ferromagnetism, which promotes spin anticorrelations and domain formation; and pairing, which renders the repulsive fermionic atoms unstable toward forming weakly bound bosonic molecules. The breakdown of the homogeneous repulsive Fermi liquid arising from such concurrent mechanisms has been recently observed in real time through pump-probe spectroscopic techniques [A. Amico et al., Phys. Rev. Lett. 121. 253602 (2018)]. These studies also lead to the discovery of an emergent metastable many-body state, an unpredicted quantum emulsion of anticorrelated fermions and pairs. Here, we investigate in detail the properties of such an exotic regime by studying the evolution of kinetic and release energies, the spectral response and coherence of the unpaired fermionic population, and its spin-density noise correlations. All our observations consistently point to a low-temperature heterogeneous phase, where paired and unpaired fermions macroscopically coexist while featuring microscale phase separation. Our findings open appealing avenues for the exploration of quantum emulsions and also possibly of inhomogeneous superfluid regimes, where pair condensation may coexist with magnetic order.

Exploring emergent heterogeneous phases in strongly repulsive Fermi gases

Scazza F;
2020-01-01

Abstract

Recent experiments have revitalized the interest in a Fermi gas of ultracold atoms with strong repulsive interactions. In spite of its seeming simplicity, this system exhibits a complex behavior, resulting from the competing action of two distinct instabilities: ferromagnetism, which promotes spin anticorrelations and domain formation; and pairing, which renders the repulsive fermionic atoms unstable toward forming weakly bound bosonic molecules. The breakdown of the homogeneous repulsive Fermi liquid arising from such concurrent mechanisms has been recently observed in real time through pump-probe spectroscopic techniques [A. Amico et al., Phys. Rev. Lett. 121. 253602 (2018)]. These studies also lead to the discovery of an emergent metastable many-body state, an unpredicted quantum emulsion of anticorrelated fermions and pairs. Here, we investigate in detail the properties of such an exotic regime by studying the evolution of kinetic and release energies, the spectral response and coherence of the unpaired fermionic population, and its spin-density noise correlations. All our observations consistently point to a low-temperature heterogeneous phase, where paired and unpaired fermions macroscopically coexist while featuring microscale phase separation. Our findings open appealing avenues for the exploration of quantum emulsions and also possibly of inhomogeneous superfluid regimes, where pair condensation may coexist with magnetic order.
2020
Pubblicato
File in questo prodotto:
File Dimensione Formato  
PhysRevA.101.013603.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2995214_PhysRevA.101.013603-Post_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2995214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact