We address the stability issue in Calder'on's problem for a special class of anisotropic conductivities of the form $sigma=gamma A$ in a Lipschitz domain $Omegasubsetmathbb{R}^n$, $ngeq 3$, where $A$ is a known Lipschitz continuous matrix-valued function and $gamma$ is the unknown piecewise affine scalar function on a given partition of $Omega$. We define an ad-hoc misfit functional encoding our data and establish stability estimates for this class of anisotropic conductivity in terms of both the misfit functional and the more commonly used local Dirichlet-to-Neumann map.
Stability for the Calderón's problem for a class of anisotropic conductivities via an ad-hoc misfit functional
Sonia Foschiatti;Eva Sincich
2021-01-01
Abstract
We address the stability issue in Calder'on's problem for a special class of anisotropic conductivities of the form $sigma=gamma A$ in a Lipschitz domain $Omegasubsetmathbb{R}^n$, $ngeq 3$, where $A$ is a known Lipschitz continuous matrix-valued function and $gamma$ is the unknown piecewise affine scalar function on a given partition of $Omega$. We define an ad-hoc misfit functional encoding our data and establish stability estimates for this class of anisotropic conductivity in terms of both the misfit functional and the more commonly used local Dirichlet-to-Neumann map.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Foschiatti_2021_Inverse_Problems_37_125007.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.