Background: Self-renewal properties are attributed to critical amounts of the OCT4A transcription factor, and little is known about its post-translational regulation. Results: OCT4A interacts with ERK1/2 and is phosphorylated at Ser-111, increasing its ubiquitination and degradation. Discussion: These results suggest an increase in OCT4A degradation downstream of MEK1 activation and FGF2 treatment. Significance: Controlling the mechanism by which cells balance self-renewal would advance our knowledge of stem cells. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.

Serine 111 phosphorylation regulates OCT4A protein subcellular distribution and degradation

Ferro F.
Conceptualization
;
2012-01-01

Abstract

Background: Self-renewal properties are attributed to critical amounts of the OCT4A transcription factor, and little is known about its post-translational regulation. Results: OCT4A interacts with ERK1/2 and is phosphorylated at Ser-111, increasing its ubiquitination and degradation. Discussion: These results suggest an increase in OCT4A degradation downstream of MEK1 activation and FGF2 treatment. Significance: Controlling the mechanism by which cells balance self-renewal would advance our knowledge of stem cells. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.
2012
Pubblicato
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2996141
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact