We study the reduced dynamics of open quantum spin chains of arbitrary length N with nearest-neighbor XX interactions, immersed within an external constant magnetic field along the z direction, the end spins of which are weakly coupled to heat baths at different temperatures, via energy-preserving couplings. We find the analytic expression of the unique stationary state of the master equation obtained in the so-called global approach based on the spectralization of the full-chain Hamiltonian. Hinging upon the explicit stationary state, we reveal the presence of sink and source terms in the spin-flow continuity equation and compare their behavior with that of the stationary heat flow. Moreover, we also obtain analytic expressions for the steady-state two-spin reduced density matrices and for their concurrence. We then set up an algorithm suited to compute the stationary bipartite entanglement along the chain and to study its dependence on the Hamiltonian parameters and on the bath temperatures.

Exact Steady State of the Open XX-Spin Chain: Entanglement and Transport Properties

Benatti, F
Membro del Collaboration Group
;
Floreanini, R
Membro del Collaboration Group
;
2021-01-01

Abstract

We study the reduced dynamics of open quantum spin chains of arbitrary length N with nearest-neighbor XX interactions, immersed within an external constant magnetic field along the z direction, the end spins of which are weakly coupled to heat baths at different temperatures, via energy-preserving couplings. We find the analytic expression of the unique stationary state of the master equation obtained in the so-called global approach based on the spectralization of the full-chain Hamiltonian. Hinging upon the explicit stationary state, we reveal the presence of sink and source terms in the spin-flow continuity equation and compare their behavior with that of the stationary heat flow. Moreover, we also obtain analytic expressions for the steady-state two-spin reduced density matrices and for their concurrence. We then set up an algorithm suited to compute the stationary bipartite entanglement along the chain and to study its dependence on the Hamiltonian parameters and on the bath temperatures.
2021
Pubblicato
https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.2.030344
File in questo prodotto:
File Dimensione Formato  
PRXQuantum.2.030344.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 984.44 kB
Formato Adobe PDF
984.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2997711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact