Among the 17 Sustainable Development Goals presented by the United Nations in 2015, great attention is devoted to the production of goods and chemicals by use of renewable raw materials, by recycling of products and by extensive use of renewable energy sources. In this context, photocatalysis attracted great attention for the possibility to exploit Solar light to promote the desired chemical reactions. Besides its use in degradation of pollutants and in the production of fuels, some efforts have been devoted in the development of photocatalytic processes for the synthesis of fine chemicals with high added-value. In this work, we investigated the sustainable photocatalytic synthesis of benzimidazole derivatives through a one-pot, tandem process starting from a nitro compound and ethanol. By a photocatalytic approach, ethanol is dehydrogenated producing the hydrogen required for reduction of nitro groups and the aldehyde required for cyclization and production of the benzimidazole unit. Co-doping of TiO2 with B and N is beneficial to increase the photocatalytic activity in H2 production from ethanol. The effect of various metal co-catalysts (Pt, Pd Ag, Cu) have been evaluated on H2 production rate and on selectivity in the synthesis of substituted benzimidazoles: Pt showed the highest selectivity in the desired products while Pd demonstrated a great activity for hydrodehalogenation, with potential interest for degradation of persistent pollutants.
Sustainable photocatalytic synthesis of benzimidazoles
Montini T.
;Gombac V.;Adami G.;Fornasiero P.
2021-01-01
Abstract
Among the 17 Sustainable Development Goals presented by the United Nations in 2015, great attention is devoted to the production of goods and chemicals by use of renewable raw materials, by recycling of products and by extensive use of renewable energy sources. In this context, photocatalysis attracted great attention for the possibility to exploit Solar light to promote the desired chemical reactions. Besides its use in degradation of pollutants and in the production of fuels, some efforts have been devoted in the development of photocatalytic processes for the synthesis of fine chemicals with high added-value. In this work, we investigated the sustainable photocatalytic synthesis of benzimidazole derivatives through a one-pot, tandem process starting from a nitro compound and ethanol. By a photocatalytic approach, ethanol is dehydrogenated producing the hydrogen required for reduction of nitro groups and the aldehyde required for cyclization and production of the benzimidazole unit. Co-doping of TiO2 with B and N is beneficial to increase the photocatalytic activity in H2 production from ethanol. The effect of various metal co-catalysts (Pt, Pd Ag, Cu) have been evaluated on H2 production rate and on selectivity in the synthesis of substituted benzimidazoles: Pt showed the highest selectivity in the desired products while Pd demonstrated a great activity for hydrodehalogenation, with potential interest for degradation of persistent pollutants.File | Dimensione | Formato | |
---|---|---|---|
Sustainable photocatalytic synthesis of benzimidazoles.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2999114_Sustainable photocatalytic synthesis of benzimidazoles-Post_print.pdf
Open Access dal 03/12/2023
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Creative commons
Dimensione
2.28 MB
Formato
Adobe PDF
|
2.28 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.