Ammonia is one of the most useful chemicals for the fertilizer industry and is also promising as an important energy carrier for fuel cell application, and is currently mostly produced by the traditional Haber-Bosch process under high temperature and pressure conditions. This energy-intensive process is detrimental to the environment due to the dependence on fossil fuels and the emission of significant greenhouse gases (such as CO2). Ammonia productionviathe electrochemical nitrogen reduction reaction (ENRR) has been recognized as a green sustainable alternative to the Haber-Bosch process in recent years. Current ENRR research mainly focuses on the catalyst for ammonia selective production and the enhancement of faradaic efficiency at high current density; however, these have not been explored well due to the unavailability of highly efficient and cheap catalysts. Herein, this review provides information on the ENRR process along with (i) theoretical background, (ii) experimental methodology of the electrocatalytic process and (iii) computational screening of promising catalysts. The impact of active sites and defects on the activity, selectivity, and stability of the catalysts is deeply understood. Furthermore, we demonstrate the mechanistic understanding of the ENRR process on the surface of catalysts, with the aim of boosting the improvement of the ENRR activities. The ammonia detection methods are also summarized along with thorough discussion of control experiments. Finally, this review highlights prevailing problems in existing ENRR methods of ammonia production along with technical advancements proposed to address these issues and concludes with comments on opportunities and future directions of the ENRR process.

Electrochemical nitrogen reduction: recent progress and prospects

Dolla T. H.
Writing – Review & Editing
;
Montini T.
Writing – Review & Editing
;
2021-01-01

Abstract

Ammonia is one of the most useful chemicals for the fertilizer industry and is also promising as an important energy carrier for fuel cell application, and is currently mostly produced by the traditional Haber-Bosch process under high temperature and pressure conditions. This energy-intensive process is detrimental to the environment due to the dependence on fossil fuels and the emission of significant greenhouse gases (such as CO2). Ammonia productionviathe electrochemical nitrogen reduction reaction (ENRR) has been recognized as a green sustainable alternative to the Haber-Bosch process in recent years. Current ENRR research mainly focuses on the catalyst for ammonia selective production and the enhancement of faradaic efficiency at high current density; however, these have not been explored well due to the unavailability of highly efficient and cheap catalysts. Herein, this review provides information on the ENRR process along with (i) theoretical background, (ii) experimental methodology of the electrocatalytic process and (iii) computational screening of promising catalysts. The impact of active sites and defects on the activity, selectivity, and stability of the catalysts is deeply understood. Furthermore, we demonstrate the mechanistic understanding of the ENRR process on the surface of catalysts, with the aim of boosting the improvement of the ENRR activities. The ammonia detection methods are also summarized along with thorough discussion of control experiments. Finally, this review highlights prevailing problems in existing ENRR methods of ammonia production along with technical advancements proposed to address these issues and concludes with comments on opportunities and future directions of the ENRR process.
2021
Pubblicato
https://pubs.rsc.org/en/content/articlelanding/2021/cc/d1cc01451j
File in questo prodotto:
File Dimensione Formato  
Electrochemical nitrogen reduction.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.73 MB
Formato Adobe PDF
3.73 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2999743
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 68
social impact