We consider a system describing the motion of an isentropic, inviscid, weakly compressible, fast rotating fluid in the whole space R-3, with initial data belonging to H-s (R-3), s > 5/2. We prove that the system admits a unique local strong solution in L-infinity ([0, T]; H-s (R-3)), where T is independent of the Rossby and Mach numbers. Moreover, using Strichartz-type estimates, we prove the longtime existence of the solution, i.e. its lifespan is of the order of epsilon(-alpha), alpha > 0, without any smallness assumption on the initial data (the initial data can even go to infinity in some sense), provided that the rotation is fast enough.
DISPERSIVE EFFECTS OF WEAKLY COMPRESSIBLE AND FAST ROTATING INVISCID FLUIDS
Scrobogna S
2018-01-01
Abstract
We consider a system describing the motion of an isentropic, inviscid, weakly compressible, fast rotating fluid in the whole space R-3, with initial data belonging to H-s (R-3), s > 5/2. We prove that the system admits a unique local strong solution in L-infinity ([0, T]; H-s (R-3)), where T is independent of the Rossby and Mach numbers. Moreover, using Strichartz-type estimates, we prove the longtime existence of the solution, i.e. its lifespan is of the order of epsilon(-alpha), alpha > 0, without any smallness assumption on the initial data (the initial data can even go to infinity in some sense), provided that the rotation is fast enough.File | Dimensione | Formato | |
---|---|---|---|
170719-compr_rot_E-rev.pdf
accesso aperto
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
647.32 kB
Formato
Adobe PDF
|
647.32 kB | Adobe PDF | Visualizza/Apri |
pdf.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
18.23 MB
Formato
Adobe PDF
|
18.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.