We consider a system describing the motion of an isentropic, inviscid, weakly compressible, fast rotating fluid in the whole space R-3, with initial data belonging to H-s (R-3), s > 5/2. We prove that the system admits a unique local strong solution in L-infinity ([0, T]; H-s (R-3)), where T is independent of the Rossby and Mach numbers. Moreover, using Strichartz-type estimates, we prove the longtime existence of the solution, i.e. its lifespan is of the order of epsilon(-alpha), alpha > 0, without any smallness assumption on the initial data (the initial data can even go to infinity in some sense), provided that the rotation is fast enough.

DISPERSIVE EFFECTS OF WEAKLY COMPRESSIBLE AND FAST ROTATING INVISCID FLUIDS

Scrobogna S
2018-01-01

Abstract

We consider a system describing the motion of an isentropic, inviscid, weakly compressible, fast rotating fluid in the whole space R-3, with initial data belonging to H-s (R-3), s > 5/2. We prove that the system admits a unique local strong solution in L-infinity ([0, T]; H-s (R-3)), where T is independent of the Rossby and Mach numbers. Moreover, using Strichartz-type estimates, we prove the longtime existence of the solution, i.e. its lifespan is of the order of epsilon(-alpha), alpha > 0, without any smallness assumption on the initial data (the initial data can even go to infinity in some sense), provided that the rotation is fast enough.
File in questo prodotto:
File Dimensione Formato  
170719-compr_rot_E-rev.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 647.32 kB
Formato Adobe PDF
647.32 kB Adobe PDF Visualizza/Apri
pdf.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 18.23 MB
Formato Adobe PDF
18.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3003670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact