The main s-process taking place in low-mass stars produces about half of the elements heavier than iron. It is therefore very important to determine the importance and impact of nuclear physics uncertainties on this process. We have performed extensive nuclear reaction network calculations using individual and temperature-dependent uncertainties for reactions involving elements heavier than iron, within a Monte Carlo framework. Using this technique, we determined the uncertainty in the main s-process abundance predictions due to nuclear uncertainties linked to weak interactions and neutron captures on elements heavier than iron. We also identified the key nuclear reactions dominating these uncertainties. We found that β-decay rate uncertainties affect only a few nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron-capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are in general small (less than 50 per cent). Three key reactions, nevertheless, stand out because they significantly affect the uncertainties of a large number of nuclides. These are 56Fe(n,γ), 64Ni(n,γ), and 138Ba(n,γ). We discuss the prospect of reducing uncertainties in the key reactions identified in this study with future experiments.

Uncertainties in s-process nucleosynthesis in low-mass stars determined from Monte Carlo variations

Cescutti, G.
;
2018-01-01

Abstract

The main s-process taking place in low-mass stars produces about half of the elements heavier than iron. It is therefore very important to determine the importance and impact of nuclear physics uncertainties on this process. We have performed extensive nuclear reaction network calculations using individual and temperature-dependent uncertainties for reactions involving elements heavier than iron, within a Monte Carlo framework. Using this technique, we determined the uncertainty in the main s-process abundance predictions due to nuclear uncertainties linked to weak interactions and neutron captures on elements heavier than iron. We also identified the key nuclear reactions dominating these uncertainties. We found that β-decay rate uncertainties affect only a few nuclides near s-process branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties in neutron-capture rates, either directly producing or destroying the nuclide of interest. Combined total nuclear uncertainties due to reactions on heavy elements are in general small (less than 50 per cent). Three key reactions, nevertheless, stand out because they significantly affect the uncertainties of a large number of nuclides. These are 56Fe(n,γ), 64Ni(n,γ), and 138Ba(n,γ). We discuss the prospect of reducing uncertainties in the key reactions identified in this study with future experiments.
File in questo prodotto:
File Dimensione Formato  
Cescutti_2018_MNRAS_478_4101.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3003880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact