Near Infrared (NIR) spectroscopy is an analytical technology widely used for the non-destructive characterisation of organic samples, considering both qualitative and quantitative attributes. In the present study, the combination of Multi-target (MT) prediction approaches and Machine Learning algorithms has been evaluated as an effective strategy to improve prediction performances of NIR data from wheat flour samples. Three different Multi-target approaches have been tested: Multi-target Regressor Stacking (MTRS), Ensemble of Regressor Chains (ERC) and Deep Structure for Tracking Asynchronous Regressor Stack (DSTARS). Each one of these techniques has been tested with different regression methods: Support Vector Machine (SVM), Random Forest (RF) and Linear Regression (LR), on a dataset composed of NIR spectra of bread wheat flours for the prediction of quality-related parameters. By combining all MT techniques and predictors, we obtained an improvement up to 7% in predictive performance, compared with the corresponding Single-target (ST) approaches. The results support the potential advantage of MT techniques over ST techniques for analysing NIR spectra.

Multi-target prediction of wheat flour quality parameters with near infrared spectroscopy

Barbon Junior S
;
2020-01-01

Abstract

Near Infrared (NIR) spectroscopy is an analytical technology widely used for the non-destructive characterisation of organic samples, considering both qualitative and quantitative attributes. In the present study, the combination of Multi-target (MT) prediction approaches and Machine Learning algorithms has been evaluated as an effective strategy to improve prediction performances of NIR data from wheat flour samples. Three different Multi-target approaches have been tested: Multi-target Regressor Stacking (MTRS), Ensemble of Regressor Chains (ERC) and Deep Structure for Tracking Asynchronous Regressor Stack (DSTARS). Each one of these techniques has been tested with different regression methods: Support Vector Machine (SVM), Random Forest (RF) and Linear Regression (LR), on a dataset composed of NIR spectra of bread wheat flours for the prediction of quality-related parameters. By combining all MT techniques and predictors, we obtained an improvement up to 7% in predictive performance, compared with the corresponding Single-target (ST) approaches. The results support the potential advantage of MT techniques over ST techniques for analysing NIR spectra.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2214317318304554-main(1).pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3004478
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? ND
social impact