In this note, we study Togliatti systems generated by invariants of the dihedral group D2d acting on k[x0, x1, x2]. This leads to the first family of non-monomial Togliatti systems, which we call GT-systems with group D2d. We study their associated varieties SD2d, called GT-surfaces with group D2d. We prove that there are arithmetically Cohen-Macaulay surfaces whose homogeneous ideal, I(SD2d), is minimally generated by quadrics and we find a minimal free resolution of I(SD2d).
Togliatti systems associated to the dihedral group and the weak Lefschetz property
Mezzetti E.;
2021-01-01
Abstract
In this note, we study Togliatti systems generated by invariants of the dihedral group D2d acting on k[x0, x1, x2]. This leads to the first family of non-monomial Togliatti systems, which we call GT-systems with group D2d. We study their associated varieties SD2d, called GT-surfaces with group D2d. We prove that there are arithmetically Cohen-Macaulay surfaces whose homogeneous ideal, I(SD2d), is minimally generated by quadrics and we find a minimal free resolution of I(SD2d).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Colarte-Gómez2021_Article_TogliattiSystemsAssociatedToTh.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
278.94 kB
Formato
Adobe PDF
|
278.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
3004876_Colarte-Gขmez2021_Article_TogliattiSystemsAssociatedToTh-Post_print.pdf
Open Access dal 11/12/2022
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
276.77 kB
Formato
Adobe PDF
|
276.77 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.