In this note, we study Togliatti systems generated by invariants of the dihedral group D2d acting on k[x0, x1, x2]. This leads to the first family of non-monomial Togliatti systems, which we call GT-systems with group D2d. We study their associated varieties SD2d, called GT-surfaces with group D2d. We prove that there are arithmetically Cohen-Macaulay surfaces whose homogeneous ideal, I(SD2d), is minimally generated by quadrics and we find a minimal free resolution of I(SD2d).

Togliatti systems associated to the dihedral group and the weak Lefschetz property

Mezzetti E.;
2021-01-01

Abstract

In this note, we study Togliatti systems generated by invariants of the dihedral group D2d acting on k[x0, x1, x2]. This leads to the first family of non-monomial Togliatti systems, which we call GT-systems with group D2d. We study their associated varieties SD2d, called GT-surfaces with group D2d. We prove that there are arithmetically Cohen-Macaulay surfaces whose homogeneous ideal, I(SD2d), is minimally generated by quadrics and we find a minimal free resolution of I(SD2d).
2021
10-dic-2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Colarte-Gómez2021_Article_TogliattiSystemsAssociatedToTh.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 278.94 kB
Formato Adobe PDF
278.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
3004876_Colarte-Gขmez2021_Article_TogliattiSystemsAssociatedToTh-Post_print.pdf

Open Access dal 11/12/2022

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 276.77 kB
Formato Adobe PDF
276.77 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3004876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact