We study the Ehresmann–Schauenburg bialgebroid of a noncommutative principal bundle as a quantization of the gauge groupoid of a classical principal bundle. We show that the gauge group of the noncommutative bundle is isomorphic to the group of bisections of the bialgebroid, and we give a crossed module structure for the bisections and the automorphisms of the bialgebroid. Examples include: Galois objects of Taft algebras, a monopole bundle over a quantum sphere and a not faithfully flat Hopf–Galois extension of commutative algebras. For each of the latter two examples, there is in fact a suitable invertible antipode for the bialgebroid making it a Hopf algebroid.

Gauge groups and bialgebroids

Landi G.
2021-01-01

Abstract

We study the Ehresmann–Schauenburg bialgebroid of a noncommutative principal bundle as a quantization of the gauge groupoid of a classical principal bundle. We show that the gauge group of the noncommutative bundle is isomorphic to the group of bisections of the bialgebroid, and we give a crossed module structure for the bisections and the automorphisms of the bialgebroid. Examples include: Galois objects of Taft algebras, a monopole bundle over a quantum sphere and a not faithfully flat Hopf–Galois extension of commutative algebras. For each of the latter two examples, there is in fact a suitable invertible antipode for the bialgebroid making it a Hopf algebroid.
File in questo prodotto:
File Dimensione Formato  
Han-Landi2021_Article_GaugeGroupsAndBialgebroids.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 443.49 kB
Formato Adobe PDF
443.49 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3005011
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact