The fast development of digitalization and computational science is opening new possibilities for a rapid design of new materials. Computational tools coupled with focused experiments can be successfully used for the design of new nanostructured materials in different sectors, particularly in the area of biomedical applications. This paper starts with a general introduction on the future of computational tools for the design of new materials and introduces the paradigm of multiscale molecular modeling. It then continues with the description of the multiscale (i.e., atomistic, mesoscale and finite element calculations) computational recipe for the prediction of novel materials and structures for biomedical applications. Finally, the comparison of in silico and experimental results on selected systems of interest in the area of life sciences is reported and discussed. The quality of the agreement obtained between virtual and real data for such complex systems indeed confirms the validity of computational tools for the design of nanostructured polymer systems for biomedical applications.

In silico design of self-assembly nanostructured polymer systems by multiscale molecular modeling

Laurini, Erik;Marson, Domenico;Fermeglia, Maurizio
;
Pricl, Sabrina
2019-01-01

Abstract

The fast development of digitalization and computational science is opening new possibilities for a rapid design of new materials. Computational tools coupled with focused experiments can be successfully used for the design of new nanostructured materials in different sectors, particularly in the area of biomedical applications. This paper starts with a general introduction on the future of computational tools for the design of new materials and introduces the paradigm of multiscale molecular modeling. It then continues with the description of the multiscale (i.e., atomistic, mesoscale and finite element calculations) computational recipe for the prediction of novel materials and structures for biomedical applications. Finally, the comparison of in silico and experimental results on selected systems of interest in the area of life sciences is reported and discussed. The quality of the agreement obtained between virtual and real data for such complex systems indeed confirms the validity of computational tools for the design of nanostructured polymer systems for biomedical applications.
2019
Pubblicato
https://stijournal.pl/resources/html/article/details?id=193417&language=en
File in questo prodotto:
File Dimensione Formato  
01_Fermeglia_proof-MF.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3008060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact