The article presents the solution adopted in an existing blast furnace with only two safety valves to minimize the dust and gas emissions to the atmosphere, in case of emergency relief due to abnormal overpressure during operating issues in the blast furnace process. Before the implementation of the system, several openings of the emergency bleeder valves were observed: These led to sensitive pollutant emissions, also in terms of acoustic and visive events, with high impact on the surrounding environment. The new relief system, in addition to the existing bleeder valves, has been engineered with a Computational Fluid Dynamic (CFD) analysis using Ansys Fluent to find out the most effective solution and to minimize modifications on the plant. Few plant modifications, while guaranteeing the achievement of the target of reducing the bleeder openings, allow to reduce the plant shutdown costs for the modifications themselves and the maintenance costs during plant operation and to simplify the operating logic of the blast furnace overpressure control systems. The new installation increased the safety operation of the blast furnace, and it drastically reduced the bleeder valves openings—4% of the pre-intervention total opening time per year—and the associated emissions in spite of the rise of the pig iron production, as recorded by the monitoring and supervision system.

CFD Analysis of Low-Cost Solutions to Minimize Gas and Dust Emissions during the Emergency Opening of Blast Furnace Bleeders

Boscolo M.;Padoano E.;Parussini L.
;
2022-01-01

Abstract

The article presents the solution adopted in an existing blast furnace with only two safety valves to minimize the dust and gas emissions to the atmosphere, in case of emergency relief due to abnormal overpressure during operating issues in the blast furnace process. Before the implementation of the system, several openings of the emergency bleeder valves were observed: These led to sensitive pollutant emissions, also in terms of acoustic and visive events, with high impact on the surrounding environment. The new relief system, in addition to the existing bleeder valves, has been engineered with a Computational Fluid Dynamic (CFD) analysis using Ansys Fluent to find out the most effective solution and to minimize modifications on the plant. Few plant modifications, while guaranteeing the achievement of the target of reducing the bleeder openings, allow to reduce the plant shutdown costs for the modifications themselves and the maintenance costs during plant operation and to simplify the operating logic of the blast furnace overpressure control systems. The new installation increased the safety operation of the blast furnace, and it drastically reduced the bleeder valves openings—4% of the pre-intervention total opening time per year—and the associated emissions in spite of the rise of the pig iron production, as recorded by the monitoring and supervision system.
File in questo prodotto:
File Dimensione Formato  
applsci-12-02266.pdf

accesso aperto

Descrizione: articolo_principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 10.2 MB
Formato Adobe PDF
10.2 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3013732
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact