We describe an efficient photocatalytic procedure for the direct iodosulfonylation of terminal olefins 3 with α-iodo phenylsulfones 4. Specifically, the process uses the simple, robust, and fully recyclable phenol derivative 6e as the precatalytic system and occurs with visible-light irradiation (450 nm). Mechanistic investigations proved the key role of the in situ generated photocatalyst, namely phenolate anion 7e, which has shown high catalytic activity and considerable stability toward the operating conditions. Importantly, this photocatalytic transformation provides a wide variety of densely functionalized alkyl iodides 5 (23 examples, up to 95% yield). Finally, the synthetic potential of this photochemical transformation was demonstrated by scaling up the process under microfluidic conditions (up to 0.67 mmol h–1) while accessing a series of relevant product manipulations.
Unveiling the Synthetic Potential of Substituted Phenols as Fully Recyclable Organophotoredox Catalysts for the Iodosulfonylation of Olefins
Cristian Rosso;Marina Kurbasic;Maurizio Prato;Giacomo Filippini
2022-01-01
Abstract
We describe an efficient photocatalytic procedure for the direct iodosulfonylation of terminal olefins 3 with α-iodo phenylsulfones 4. Specifically, the process uses the simple, robust, and fully recyclable phenol derivative 6e as the precatalytic system and occurs with visible-light irradiation (450 nm). Mechanistic investigations proved the key role of the in situ generated photocatalyst, namely phenolate anion 7e, which has shown high catalytic activity and considerable stability toward the operating conditions. Importantly, this photocatalytic transformation provides a wide variety of densely functionalized alkyl iodides 5 (23 examples, up to 95% yield). Finally, the synthetic potential of this photochemical transformation was demonstrated by scaling up the process under microfluidic conditions (up to 0.67 mmol h–1) while accessing a series of relevant product manipulations.File | Dimensione | Formato | |
---|---|---|---|
ACS Catalysis 2022_ATRA fenoli.pdf
accesso aperto
Descrizione: Articolo scientifico
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
cs2c00565_si_001.pdf
accesso aperto
Descrizione: supporting material
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
5.41 MB
Formato
Adobe PDF
|
5.41 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.