We present a reformulation of gauge theories in terms of gauge invariant fields. Focusing on abelian theories, we show that the gauge and matter covariant fields can be recombined to introduce new gauge invariant degrees of freedom. Starting from the (1+1) dimensional case on the lattice, with both periodic and open boundary conditions, we then generalize to higher dimensions and to the continuum limit. To show explicit and physically relevant examples of the reformulation, we apply it to the Hamiltonian of a single particle in a (static) magnetic field, to pure abelian lattice gauge theories, to the Lagrangian of quantum electrodynamics in (3+1) dimensions and to the Hamiltonian of the 2d and the 3d Hofstadter model. In the latter, we show that the particular construction used to eliminate the gauge covariant fields enters the definition of the magnetic Brillouin zone. Finally, we briefly comment on relevance of the presented reformulation to the study of interacting gauge theories.

Reformulation of gauge theories in terms of gauge invariant fields

Trombettoni A.
2022-01-01

Abstract

We present a reformulation of gauge theories in terms of gauge invariant fields. Focusing on abelian theories, we show that the gauge and matter covariant fields can be recombined to introduce new gauge invariant degrees of freedom. Starting from the (1+1) dimensional case on the lattice, with both periodic and open boundary conditions, we then generalize to higher dimensions and to the continuum limit. To show explicit and physically relevant examples of the reformulation, we apply it to the Hamiltonian of a single particle in a (static) magnetic field, to pure abelian lattice gauge theories, to the Lagrangian of quantum electrodynamics in (3+1) dimensions and to the Hamiltonian of the 2d and the 3d Hofstadter model. In the latter, we show that the particular construction used to eliminate the gauge covariant fields enters the definition of the magnetic Brillouin zone. Finally, we briefly comment on relevance of the presented reformulation to the study of interacting gauge theories.
2022
Pubblicato
File in questo prodotto:
File Dimensione Formato  
ap_436_168683_p_25_11_21.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 523.35 kB
Formato Adobe PDF
523.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
ap_436_168683_p_25_11_21-Post_print.pdf

Open Access dal 26/11/2023

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 923.8 kB
Formato Adobe PDF
923.8 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3022397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact