Modularity is a desirable property for embodied agents, as it could foster their suitability to different domains by disassembling them into transferable modules that can be reassembled differently. We focus on a class of embodied agents known as voxel-based soft robots (VSRs). They are aggregations of elastic blocks of soft material; as such, their morphologies are intrinsically modular. Nevertheless, controllers used until now for VSRs act as abstract, disembodied processing units: Disassembling such controllers for the purpose of module transferability is a challenging problem. Thus, the full potential of modularity for VSRs still remains untapped. In this work, we propose a novel self-organizing, embodied neural controller for VSRs. We optimize it for a given task and morphology by means of evolutionary computation: While evolving, the controller spreads across the VSR morphology in a way that permits emergence of modularity. We experimentally investigate whether such a controller (i) is effective and (ii) allows tuning of its degree of modularity, and with what kind of impact. To this end, we consider the task of locomotion on rugged terrains and evolve controllers for two morphologies. Our experiments confirm that our self-organizing, embodied controller is indeed effective. Moreover, by mimicking the structural modularity observed in biological neural networks, different levels of modularity can be achieved. Our findings suggest that the self-organization of modularity could be the basis for an automatic pipeline for assembling, disassembling, and reassembling embodied agents.

Evolving Modularity in Soft Robots Through an Embodied and Self-Organizing Neural Controller

Pigozzi, Federico;Medvet, Eric
2022-01-01

Abstract

Modularity is a desirable property for embodied agents, as it could foster their suitability to different domains by disassembling them into transferable modules that can be reassembled differently. We focus on a class of embodied agents known as voxel-based soft robots (VSRs). They are aggregations of elastic blocks of soft material; as such, their morphologies are intrinsically modular. Nevertheless, controllers used until now for VSRs act as abstract, disembodied processing units: Disassembling such controllers for the purpose of module transferability is a challenging problem. Thus, the full potential of modularity for VSRs still remains untapped. In this work, we propose a novel self-organizing, embodied neural controller for VSRs. We optimize it for a given task and morphology by means of evolutionary computation: While evolving, the controller spreads across the VSR morphology in a way that permits emergence of modularity. We experimentally investigate whether such a controller (i) is effective and (ii) allows tuning of its degree of modularity, and with what kind of impact. To this end, we consider the task of locomotion on rugged terrains and evolve controllers for two morphologies. Our experiments confirm that our self-organizing, embodied controller is indeed effective. Moreover, by mimicking the structural modularity observed in biological neural networks, different levels of modularity can be achieved. Our findings suggest that the self-organization of modularity could be the basis for an automatic pipeline for assembling, disassembling, and reassembling embodied agents.
File in questo prodotto:
File Dimensione Formato  
2022-ArtificialLife-ModularityEmbodiedSelfOrganizingVSRController (1).pdf

accesso aperto

Descrizione: link journal home page https://direct.mit.edu/artl/article-abstract/doi/10.1162/artl_a_00367/112241/Evolving-Modularity-in-Soft-Robots-Through-an?redirectedFrom=fulltext
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 845.96 kB
Formato Adobe PDF
845.96 kB Adobe PDF Visualizza/Apri
3060665-2-28.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 10.52 MB
Formato Adobe PDF
10.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3026126
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 2
social impact