Realistic stochastic modeling is increasingly requiring the use of bounded noises. In this work, properties and relationships of commonly employed bounded stochastic processes are investigated within a solid mathematical ground. Four families are object of investigation: the Sine-Wiener (SW), the Doering–Cai–Lin (DCL), the Tsallis–Stariolo–Borland (TSB), and the Kessler–Sørensen (KS) families. We address mathematical questions on existence and uniqueness of the processes defined through Stochastic Differential Equations, which often conceal non-obvious behavior, and we explore the behavior of the solutions near the boundaries of the state space. The expression of the time-dependent probability density of the Sine-Wiener noise is provided in closed form, and a close connection with the Doering–Cai–Lin noise is shown. Further relationships among the different families are explored, pathwise and in distribution. Finally, we illustrate an analogy between the Kessler–Sørensen family and Bessel processes, which allows to relate the respective local times at the boundaries

Properties of Bounded Stochastic Processes Employed in Biophysics

D'ONOFRIO A;
2020-01-01

Abstract

Realistic stochastic modeling is increasingly requiring the use of bounded noises. In this work, properties and relationships of commonly employed bounded stochastic processes are investigated within a solid mathematical ground. Four families are object of investigation: the Sine-Wiener (SW), the Doering–Cai–Lin (DCL), the Tsallis–Stariolo–Borland (TSB), and the Kessler–Sørensen (KS) families. We address mathematical questions on existence and uniqueness of the processes defined through Stochastic Differential Equations, which often conceal non-obvious behavior, and we explore the behavior of the solutions near the boundaries of the state space. The expression of the time-dependent probability density of the Sine-Wiener noise is provided in closed form, and a close connection with the Doering–Cai–Lin noise is shown. Further relationships among the different families are explored, pathwise and in distribution. Finally, we illustrate an analogy between the Kessler–Sørensen family and Bessel processes, which allows to relate the respective local times at the boundaries
File in questo prodotto:
File Dimensione Formato  
J96 2020 Stoch Analisis Applications.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.62 MB
Formato Adobe PDF
2.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
J96+2020+Stoch+Analisis+Applications-Post_print.pdf

Open Access dal 13/03/2020

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 2.97 MB
Formato Adobe PDF
2.97 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/3029117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact