During the 24th solar cycle, the Fermi Large Area Telescope (LAT) has observed a total of 27 solar flares possessing delayed gamma-ray emission, including the exceptionally well-observed flare and coronal mass ejection (CME) on 2017 September 10. Based on the Fermi/LAT data, we plot, for the first time, maps of possible sources of the delayed >100 MeV gamma-ray emission of the 2017 September 10 event. The long-lasting gamma-ray emission is localized under the CME core. The gamma-ray spectrum exhibits intermittent changes in time, implying that more than one source of high-energy protons was formed during the flare-CME eruption. We find a good statistical correlation between the gamma-ray fluences of the Fermi/LAT-observed delayed events and the products of corresponding CME speed and the square root of the soft X-ray flare magnitude. Data support the idea that both flares and CMEs jointly contribute to the production of subrelativistic and relativistic protons near the Sun.

Multiple Sources of Solar High-energy Protons

Francesco Longo;
2021

Abstract

During the 24th solar cycle, the Fermi Large Area Telescope (LAT) has observed a total of 27 solar flares possessing delayed gamma-ray emission, including the exceptionally well-observed flare and coronal mass ejection (CME) on 2017 September 10. Based on the Fermi/LAT data, we plot, for the first time, maps of possible sources of the delayed >100 MeV gamma-ray emission of the 2017 September 10 event. The long-lasting gamma-ray emission is localized under the CME core. The gamma-ray spectrum exhibits intermittent changes in time, implying that more than one source of high-energy protons was formed during the flare-CME eruption. We find a good statistical correlation between the gamma-ray fluences of the Fermi/LAT-observed delayed events and the products of corresponding CME speed and the square root of the soft X-ray flare magnitude. Data support the idea that both flares and CMEs jointly contribute to the production of subrelativistic and relativistic protons near the Sun.
File in questo prodotto:
File Dimensione Formato  
Kocharov_2021_ApJ_915_12.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 910.15 kB
Formato Adobe PDF
910.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/3029226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact