During the 24th solar cycle, the Fermi Large Area Telescope (LAT) has observed a total of 27 solar flares possessing delayed gamma-ray emission, including the exceptionally well-observed flare and coronal mass ejection (CME) on 2017 September 10. Based on the Fermi/LAT data, we plot, for the first time, maps of possible sources of the delayed >100 MeV gamma-ray emission of the 2017 September 10 event. The long-lasting gamma-ray emission is localized under the CME core. The gamma-ray spectrum exhibits intermittent changes in time, implying that more than one source of high-energy protons was formed during the flare-CME eruption. We find a good statistical correlation between the gamma-ray fluences of the Fermi/LAT-observed delayed events and the products of corresponding CME speed and the square root of the soft X-ray flare magnitude. Data support the idea that both flares and CMEs jointly contribute to the production of subrelativistic and relativistic protons near the Sun.
Multiple Sources of Solar High-energy Protons
Francesco Longo;
2021-01-01
Abstract
During the 24th solar cycle, the Fermi Large Area Telescope (LAT) has observed a total of 27 solar flares possessing delayed gamma-ray emission, including the exceptionally well-observed flare and coronal mass ejection (CME) on 2017 September 10. Based on the Fermi/LAT data, we plot, for the first time, maps of possible sources of the delayed >100 MeV gamma-ray emission of the 2017 September 10 event. The long-lasting gamma-ray emission is localized under the CME core. The gamma-ray spectrum exhibits intermittent changes in time, implying that more than one source of high-energy protons was formed during the flare-CME eruption. We find a good statistical correlation between the gamma-ray fluences of the Fermi/LAT-observed delayed events and the products of corresponding CME speed and the square root of the soft X-ray flare magnitude. Data support the idea that both flares and CMEs jointly contribute to the production of subrelativistic and relativistic protons near the Sun.File | Dimensione | Formato | |
---|---|---|---|
Kocharov_2021_ApJ_915_12.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
910.15 kB
Formato
Adobe PDF
|
910.15 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.