We report on a systematic search for hard X-ray and gamma-ray emission in coincidence with fast radio bursts (FRBs) observed by the AGILE satellite. We used 13 yr of AGILE archival data searching for time coincidences between exposed FRBs and events detectable by the MCAL (0.4-100 MeV) and GRID (50 MeV-30 GeV) detectors at timescales ranging from milliseconds to days/weeks. The current AGILE sky coverage allowed us to extend the search for high-energy emission preceding and following the FRB occurrence. We considered all FRB sources currently included in catalogs and identified a subsample (15 events) for which a good AGILE exposure with either MCAL or GRID was obtained. In this paper we focus on nonrepeating FRBs, compared to a few nearby repeating sources. We did not detect significant MeV or GeV emission from any event. Our hard X-ray upper limits (ULs) in the MeV energy range were obtained for timescales from submillisecond to seconds, and in the GeV range from minutes to weeks around event times. We focus on a subset of five nonrepeating and two repeating FRB sources whose distances are most likely smaller than that of 180916.J0158+65 (150 Mpc). For these sources, our MeV ULs translate into ULs on the isotropically emitted energy of about 3 x 10(46) erg, comparable to that observed in the 2004 giant flare from the Galactic magnetar SGR 1806-20. On average, these nearby FRBs emit radio pulses of energies significantly larger than the recently detected SGR 1935+2154 and are not yet associated with intense MeV flaring.
AGILE Observations of Fast Radio Bursts
F. Longo;
2021-01-01
Abstract
We report on a systematic search for hard X-ray and gamma-ray emission in coincidence with fast radio bursts (FRBs) observed by the AGILE satellite. We used 13 yr of AGILE archival data searching for time coincidences between exposed FRBs and events detectable by the MCAL (0.4-100 MeV) and GRID (50 MeV-30 GeV) detectors at timescales ranging from milliseconds to days/weeks. The current AGILE sky coverage allowed us to extend the search for high-energy emission preceding and following the FRB occurrence. We considered all FRB sources currently included in catalogs and identified a subsample (15 events) for which a good AGILE exposure with either MCAL or GRID was obtained. In this paper we focus on nonrepeating FRBs, compared to a few nearby repeating sources. We did not detect significant MeV or GeV emission from any event. Our hard X-ray upper limits (ULs) in the MeV energy range were obtained for timescales from submillisecond to seconds, and in the GeV range from minutes to weeks around event times. We focus on a subset of five nonrepeating and two repeating FRB sources whose distances are most likely smaller than that of 180916.J0158+65 (150 Mpc). For these sources, our MeV ULs translate into ULs on the isotropically emitted energy of about 3 x 10(46) erg, comparable to that observed in the 2004 giant flare from the Galactic magnetar SGR 1806-20. On average, these nearby FRBs emit radio pulses of energies significantly larger than the recently detected SGR 1935+2154 and are not yet associated with intense MeV flaring.File | Dimensione | Formato | |
---|---|---|---|
Verrecchia_2021_ApJ_915_102.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.